a) Xét đường tròn tâm \(B\) có \(\widehat {MAN}\) là góc nội tiếp chắn cung \(MN\) mà \(\widehat {MAN} = 30^\circ \) nên \(\widehat {MAN} = \dfrac{1}{2}\widehat {MBN} \\\Rightarrow \widehat {MBN} = 2.\widehat {MAN} = 2.30^\circ = 60^\circ .\)
Suy ra \(\widehat {PBQ} = 60^\circ .\)
Lại xét đường tròn tâm \(C\) có \(\widehat {PBQ} = 60^\circ \) là góc nội tiếp chắn cung \(PQ \Rightarrow \widehat {PBQ} = \dfrac{1}{2}\widehat {PCQ} \\\Rightarrow \widehat {PCQ} = 2.\widehat {PBQ} = 2.60^\circ = 120^\circ .\)
b) Theo chứng minh câu a) ta có \(\widehat {PCQ} = 2\widehat {PBQ} = 2.2\widehat {MAN} \\\Leftrightarrow \widehat {PCQ} = 4.\widehat {MAN}\)
Nếu \(\widehat {PCQ} = 136^\circ \\ \Rightarrow \widehat {MAN} = \dfrac{1}{4}\widehat {PCQ}= \dfrac{{136^\circ }}{4} = 34^\circ .\)