a) \(\overrightarrow a + \overrightarrow b = \left( {2 + 1; - 2 + 4} \right) = \left( {3;2} \right)\);
\(\overrightarrow a - \overrightarrow b = \left( {2 - 1; - 2 - 4} \right) = \left( {1; - 6} \right)\),
\(2\overrightarrow a + 3\overrightarrow b = \left( {2.2 + 3.1;2.\left( { - 2} \right) + 3.4} \right) = \left( {7;8} \right)\).
b) Giả sử \(c = h\overrightarrow a + k\overrightarrow b \). Khi đó \(\left\{ \begin{array}{l}2h + k = 5\\ - 2h + 4k = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}h = 2\\k = 1\end{array} \right.\)
Vậy \(\overrightarrow c = 2\overrightarrow a + \overrightarrow b \).