\(\displaystyle P = {\displaystyle{0,75 - 0,6 + {3 \over 7} + {3 \over {13}}} \over {\displaystyle 2,75 - 2,2 + {{11} \over 7} + {{11} \over {13}}}}\)
\( = \dfrac{{\dfrac{{75}}{{100}} - \dfrac{6}{{10}} + \dfrac{3}{7} + \dfrac{3}{{13}}}}{{\dfrac{{275}}{{100}} - \dfrac{{22}}{{10}} + \dfrac{{11}}{7} + \dfrac{{11}}{{13}}}}\)
\( = \dfrac{{\dfrac{3}{4} - \dfrac{3}{5} + \dfrac{3}{7} + \dfrac{3}{{13}}}}{{\dfrac{{11}}{4} - \dfrac{{11}}{5} + \dfrac{{11}}{7} + \dfrac{{11}}{{13}}}}\)
\(\displaystyle = {\displaystyle {3.\left( {{1 \over 4} - {1 \over 5} + {1 \over 7} + {1 \over {13}}} \right)} \over {\displaystyle 11.\left( {{1 \over 4} - {1 \over 5} + {1 \over 7} + {1 \over {13}}} \right)}} \)
\(\displaystyle = {3 \over {11}}\)