Gọi \(x\) (chiếc) là số ghế băng lúc đầu. \((x \in N^*).\)
Khi đó số học sinh chia đều trên mỗi ghế băng là \(\displaystyle {{40} \over x}\) (học sinh)
Nếu bớt đi \(2\) ghế băng thì số ghế băng còn lại là \((x – 2)\) chiếc. Khi đó mỗi ghế có \(\displaystyle \left( {{{40} \over x} + 1} \right)\) học sinh ngồi.
Vì tổng số học sinh vẫn là 40 em nên ta có phương trình:
\(\displaystyle \left( {x - 2} \right)\left( {{{40} \over x} + 1} \right) = 40\)\( \Leftrightarrow x-\dfrac {80}{x}-2=0\)\(\Rightarrow {x^2} - 2{\rm{x}} -80=0.\)
Có: \(\Delta' =1+80=81 >0 \Rightarrow \) Phương trình có hai nghiệm phân biệt: \(x_1=10 \, \, (tm)\) và \(x_2=-8 \, (loại).\)
Vậy số ghế băng lúc đầu là \(10\) chiếc.