Bài 17 trang 139 SBT toán 7 tập 1

Đề bài

Chứng minh rằng nếu một đường thẳng cắt hai đường thẳng song song thì hai tia phân giác của cặp góc trong cùng phía vuông góc với nhau.

Lời giải

 

Giả sử có hai đường thẳng \(AB // CD\) cắt đường thẳng \(EF\) tại \(E\) và \(F\).

Ta có: \(\widehat {BEF} + \widehat {EFD} = 180^\circ \) (hai góc trong cùng phía)

\(\displaystyle \widehat {{E_1}} = {1 \over 2}\widehat {{\rm{BEF}}}\) (vì \(EK\) là tia phân giác \(\widehat {BEK}\))

\(\displaystyle \widehat {{F_1}} = {1 \over 2}\widehat {EFD} \) (vìa \(FK\) là tia phân giác \(\widehat {EFD}\))

\(\displaystyle \Rightarrow \widehat {{E_1}} + \widehat {{F_1}} = {1 \over 2}\left( {\widehat {{\rm{BEF}}} + \widehat {EFD}} \right) \)\(\,=\dfrac{1}{2}{.180^o}= 90^\circ \)

Áp dụng định lí tổng ba góc của một tam giác vào \(∆EKF\), ta có:

\(\widehat {EKF} + \widehat {{E_1}} + \widehat {{F_1}} = {180^o}\)

\(\Rightarrow \widehat {EKF} = 180^\circ  - \left( {\widehat {E_1} + \widehat {{F_1}}} \right) \)\(\,= 180^\circ  - 90^\circ  = 90^\circ \)

Vậy \(EK \bot FK\).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”