Quy tắc tính đạo hàm:
\(\begin{array}{l}
+ )\,\,\left( {{x^n}} \right)' = n{x^{n - 1}}\,\,\left( {n \in N,n > 1,x \in R} \right)\\
+ )\,\,\left( {\sqrt x } \right)' = \frac{1}{{2\sqrt x }}\,\,\,\left( {x > 0} \right)
\end{array}\)
+) \((u + v – w) = u’ + v’ – w’\)
+) \((u.v.w)’ = u’.vw + u.v’w + u.v.w’\)
+) \( (u.v)’ = u.v’ + v.u’\)
+) \(({u \over v})' = {{u.v' - u'.v} \over {{v^2}}}(v = v(x) \ne 0)\)
+) \(({1 \over u})' = - {{u'} \over {{u^2}}}(u = u(x) \ne 0)\)