Bài 1.70 trang 45 SBT hình học 10

Đề bài

Cho hình chữ nhật \(ABCD\). Gọi \(I\) là giao điểm của hai đường chéo \(AC\) và \(BD\).

a) Với điểm \(M \) tùy ý, hãy chứng minh \(\overrightarrow {MA}  + \overrightarrow {MC}  = \overrightarrow {MB}  + \overrightarrow {MD} \);

b) Chứng minh rằng: \(\left| {\overrightarrow {AB}  + \overrightarrow {AD} } \right| = \left| {\overrightarrow {AB}  - \overrightarrow {AD} } \right|\)

Lời giải

a) Ta có: \(\overrightarrow {MA}  + \overrightarrow {MC}  = 2\overrightarrow {MI} \); \(\overrightarrow {MB}  + \overrightarrow {MD}  = 2\overrightarrow {MI} \)

Vậy \(\overrightarrow {MA}  + \overrightarrow {MC}  = \overrightarrow {MB}  + \overrightarrow {MD} \).

b) \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)\( \Rightarrow \left| {\overrightarrow {AB}  + \overrightarrow {AD} } \right| = AC\)

\(\overrightarrow {AB}  - \overrightarrow {AD}  = \overrightarrow {DB} \)\( \Rightarrow \left| {\overrightarrow {AB}  - \overrightarrow {AD} } \right| = DB\)

Vì hai đường chéo của hình chữ nhật dài bằng nhau nên \(AC = BD\) hay \(\left| {\overrightarrow {AB}  + \overrightarrow {AD} } \right| = \left| {\overrightarrow {AB}  - \overrightarrow {AD} } \right|\).