Bài 18 trang 104 SBT toán 7 tập 1

Đề bài

a) Vẽ một đường thẳng cắt hai đường thẳng. Trong các góc tạo thành có một cặp góc so le trong bằng nhau. Đặt tên cho các góc đó.

b) Vì sao cặp góc so le trong còn lại cũng bằng nhau?

c) Vì sao mỗi cặp góc đồng vị bằng nhau?

d) Vì sao mỗi cặp góc trong cùng phía bù nhau?

e) Vì sao mỗi cặp góc ngoài cùng phía bù nhau?

Lời giải

a) Hình vẽ:

b) Giả sử ta có \(\widehat {{A_4}} = \widehat {{B_2}}\)      (1)

\(\widehat {{A_1}} + \widehat {{A_4}} = 180^\circ \) (hai góc kề bù)    (2)

\(\widehat {{B_2}} + \widehat {{B_3}} = 180^\circ \) (hai góc kề bù)    (3)

Từ (1), (2) và (3) suy ra: \(\widehat {{A_1}} = \widehat {{B_3}}\)

c) Giả sử \(\widehat {{A_4}} = \widehat {{B_2}}\)

\(\widehat {{A_2}} = \widehat {{A_4}}\) (hai góc đối đỉnh)

Suy ra \(\widehat {{A_2}} = \widehat {{B_2}}\)

\(\widehat {{B_2}} = \widehat {{B_4}}\) (hai góc đối đỉnh)

Suy ra \(\widehat {{A_4}} = \widehat {{B_4}}\)

\(\widehat {{A_1}} + \widehat {{A_2}} = {180^o}\) (hai góc kề bù)

\(\widehat {{B_1}} + \widehat {{B_2}} = {180^o}\) (hai góc kề bù)

Mà \(\widehat {{A_2}} = \widehat {{B_2}}\) nên \(\widehat {{A_1}}=\widehat {{B_1}}\)

\(\widehat {{A_1}} = \widehat {{A_3}}\) (hai góc đối đỉnh)

\(\widehat {{B_1}} = \widehat {{B_3}}\) (hai góc đối đỉnh)

Suy ra \( \widehat {A_3}= \widehat {{B_3}}\)

d) Giả sử \(\widehat {{A_4}} = \widehat {{B_2}}\)

\(\widehat {{A_1}} + \widehat {{A_4}} = 180^\circ \) (hai góc kề bù)

Suy ra \(\widehat {{A_1}} + \widehat {{B_2}} = 180^\circ \)

\(\widehat {{B_2}} + \widehat {{B_3}} = {180^o}\) (hai góc kề bù)

Mà \(\widehat {{A_4}} = \widehat {{B_2}}\)

Suy ra \(\widehat {{A_4}}  + \widehat {{B_3}} = {180^o}\)

e) Giả sử \(\widehat {{A_4}} = \widehat {{B_2}}\) suy ra \(\widehat {{A_2}} = \widehat {{B_2}}\); \(\widehat {{A_4}} =\widehat {{B_4}}\)  (theo câu c)

\(\widehat {{B_2}} + \widehat {{B_1}} = 180^\circ \) (hai góc kề bù)

Suy ra \(\widehat {{A_2}} + \widehat {{B_1}} = 180^\circ \)

\(\widehat {{A_3}} + \widehat {{A_4}} = {180^o}\) (hai góc kề bù)

Mà \(\widehat {{A_4}} =\widehat {{B_4}}\) nên suy ra \(\widehat {{A_3}} + \widehat {{B_4}} = {180^o}\)