Xét \(\Delta ABC\) vuông tại \(A\), ta có:
\(AB = BC.\cos B = BC.\cos {30^o} \)\(\,= 12.\dfrac{{\sqrt 3 }}{2} = 6\sqrt 3 \,\left( {cm} \right).\)
\(AC = BC.\sin B = BC.\sin {30^o} \)\(\,= 12.\dfrac{1}{2} = 6\,\left( {cm} \right).\)
Diện tích xung quanh của hình nón tạo thành là:
\({S_{xq}} = \pi .AC.BC = \pi .6.12 \)\(\,= 72\pi \,\left( {c{m^2}} \right).\)
Thể tích của hình nón tạo thành là:
\(V = \dfrac{1}{3}.\pi .A{C^2}.AB = \dfrac{1}{3}.\pi {.6^2}.6\sqrt 3 \)\(\,= 72\sqrt 3 \pi \,\left( {c{m^3}} \right).\)