Bài 18 trang 68 SBT toán 7 tập 1

Đề bài

Cho biết \(x\) và \(y\) là hai đại lượng tỉ lệ nghịch.

a) Thay các dấu "?" bằng các số thích hợp trong bảng dưới đây.

x

1 = 2

x2 = 3

x3 = 5

x4 = 6

y

y1 = 15

y2 = ?

y3 = ?

y4 = ?

xy

x1y1 = ?

x2y2 = ?

x3y3 = ?

x4y4 = ?

b) Có nhận xét gì về tích các giá trị tương ứng của \(x\) và \(y\) \(({x_1}{y_1},{x_2}{y_2},{x_3}{y_3},{x_4}{y_4})?\)

Lời giải

a) Vì \(x\) và \(y\) là hai đại lượng tỉ lệ nghịch nên \(xy = a\) (với \(a\) là một số khác \(0\))

Khi \(x{\rm{ }} = {\rm{ }}2{\rm{ }},{\rm{ }}y{\rm{ }} = {\rm{ }}15 \Rightarrow a = xy = 2.15 = 30 \) \(\displaystyle \Rightarrow y = {{30} \over x}\).

Khi \(x_2=3\) ta có \({y_2} = \dfrac{{30}}{3} = 10\).

Khi \(x_3=5\) ta có \({y_3} = \dfrac{{30}}{5} = 6\).

Khi \(x_4=6\) ta có \({y_4} = \dfrac{{30}}{6} = 5\).

Kết quả như sau: 

x

1 = 2

x2 = 3

x3 = 5

x4 = 6

y

y1 = 15

y2 = 10

y3 = 6

y4 = 5

xy

x1y= 30

x2y2 = 30

x3y3 = 30

x4y4 = 30

b) Nhận xét: \({x_1}{y_1} = {x_2}{y_2} = {x_3}{y_3} = {x_4}{y_4} = 30\).