a) \(E\) thuộc đường thẳng \(DC\) nên \(CE // AB.\)
Hình thang \(ABEC\; (AB // CE)\) có hai cạnh bên \(AC, BE\) song song (giả thiết) \( \Rightarrow AC = BE\) (1) (tính chất hình thang )
Lại có: \(AC = BD\) (giả thiết) (2)
Từ (1) và (2) suy ra \(BE = BD\) \( \Rightarrow \Delta BED\) cân tại \(B\) (dấu hiệu nhận biết tam giác cân).
b) Ta có \(AC{\rm{ }}//{\rm{ }}BE \Rightarrow \widehat {{C_1}} = \widehat E\) (2 góc đồng vị) (3)
\(∆BDE\) cân tại \(B\) (chứng minh trên) \( \Rightarrow \widehat {{D_1}} = \widehat E\) (4)
Từ (3) và (4) \( \Rightarrow \widehat {{D_1}} = \widehat {{C_1}}\)
Xét \(∆ACD\) và \( ∆BDC\) có:
+) \(AC = BD\) (giả thiết)
+) \(\widehat {{C_1}} = \widehat {{D_1}}\) (chứng minh trên)
+) \(CD\) chung
Suy ra \(∆ACD = ∆BDC\) (c.g.c)
c) Ta có: \(∆ACD = ∆BDC\) (chứng minh trên)
\( \Rightarrow \widehat {A{\rm{D}}C} = \widehat {BCD}\) (\(2\) góc tương ứng)
Hình thang \(ABCD\) có hai góc kề một đáy bằng nhau nên là hình thang cân.