Với \(m = 1\) ta được hàm số \(y = {x^4} - 2{x^2}\).
Có \(y' = 4{x^3} - 4x = 4x({x^2} - 1)\); \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 0\\x = 1\end{array} \right.\)
Bảng biến thiên:
Đồ thị:
b) Để \(\left( {{C_m}} \right)\) tiếp xúc với trục hoành tại hai điểm phân biệt thì điều kiện cần và đủ là hàm số đã cho có hai điểm cực tiểu, \(1\) điểm cực đại và \({y_{CT}} = 0\).
Ta có: \(y' = 4{x^3} - 4mx = 4x\left( {{x^2} - m} \right)\); \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = m\end{array} \right.\).
Để hàm số có hai điểm cực tiểu, một điểm cực đại thì phương trình \({x^2} = m\) có hai nghiệm phân biệt khác \(0\) \( \Leftrightarrow m > 0\).
Khi đó hàm số có hai điểm cực tiểu là \(x = \sqrt m \) và \(x = - \sqrt m \);
\( \Rightarrow {y_{CT}} = f\left( { \pm \sqrt m } \right)\) \( = {m^2} - 2{m^2} + {m^3} - {m^2} = {m^3} - 2{m^2}\)
\({y_{CT}} = 0 \Leftrightarrow {m^3} - 2{m^2} = 0\) \( \Leftrightarrow \left[ \begin{array}{l}m = 0\left( {KTM} \right)\\m = 2\left( {TM} \right)\end{array} \right.\).
Vậy \(m = 2\) là giá trị cần tìm.