Bài 1.82 trang 41 SBT giải tích 12

Khảo sát sự biến thiên và vẽ đồ thị \(\left( C \right)\) của hàm số \(y = \dfrac{{x + 2}}{{x - 3}}\)

b) Chứng minh rằng giao điểm \(I\) của hai tiệm cận của \(\left( C \right)\) là tâm đối xứng của \(\left( C \right)\).

c) Tìm điểm \(M\) trên đồ thị của hàm số sao cho khoảng cách từ \(M\) đến tiệm cận đứng bằng khoảng cách từ \(M\) đến tiệm cận ngang.


Lời giải

a) TXĐ: \(D = \mathbb{R}\backslash \left\{ 3 \right\}\).

Có \(y' = \dfrac{{ - 5}}{{{{\left( {x - 3} \right)}^2}}} < 0,\forall x \ne 3\) nên hàm số luôn nghịch biến trên các khoảng \(\left( { - \infty ;3} \right)\) và \(\left( {3; + \infty } \right)\).

Hàm số đã cho không có cực trị.

TCĐ: \(x = 3\) và TCN \(y = 1\).

Bảng biến thiên:

Đồ thị:

b)Tiệm cận đứng là đường thẳng \(x = 3\).

Tiệm cận ngang là đường thẳng \(y = 1\).

Do đó, giao điểm của hai đường tiệm cận là \(I\left( {3;1} \right)\).

Thực hiện phép biến đổi: \(\left\{ {\begin{array}{*{20}{c}}{x = X + 3}\\{y = Y + 1}\end{array}} \right.\) ta được \(Y + 1 = \dfrac{{X + 5}}{X}\)\( \Leftrightarrow Y = \dfrac{{X + 5}}{X} - 1 \Leftrightarrow Y = \dfrac{5}{X}\).

Vì \(Y = \dfrac{5}{X}\) là hàm số lẻ nên đồ thị \(\left( C \right)\) của hàm số này có tâm đối xứng là gốc tọa độ \(I\) của hệ tọa độ \(IXY\).

Vậy đồ thị hàm số đã cho nhận điểm \(I\left( {3;1} \right)\) làm tâm đối xứng trong hệ tọa độ cũ.

c) Giả sử  \(M({x_0};{y_0}) \in (C)\).

Gọi \({d_1}\) là khoảng cách từ \(M\) đến tiệm cận đứng và \({d_2}\) là khoảng cách từ \(M\) đến tiệm cận ngang, ta có: \({d_1} = \left| {{x_0} - 3} \right|,\)\({d_2} = \left| {{y_0} - 1} \right| = \dfrac{5}{{|{x_0} - 3|}}\)

Suy ra \(\left| {{x_0} - 3} \right| = \dfrac{5}{{\left| {{x_0} - 3} \right|}}\) \( \Leftrightarrow {\left( {{x_0} - 3} \right)^2} = 5\) \( \Leftrightarrow \left[ \begin{array}{l}{x_0} - 3 = \sqrt 5 \\{x_0} - 3 =  - \sqrt 5 \end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}{x_0} = 3 + \sqrt 5 \\{x_0} = 3 - \sqrt 5 \end{array} \right.\)

Với \({x_0} = 3 + \sqrt 5  \Rightarrow {y_0} = 1 + \sqrt 5 \) nên ta có điểm \(M\left( {3 + \sqrt 5 ;1 + \sqrt 5 } \right)\).

Với \({x_0} = 3 - \sqrt 5  \Rightarrow {y_0} = 1 - \sqrt 5 \) nên ta có điểm \(M\left( {3 - \sqrt 5 ;1 - \sqrt 5 } \right)\).

Vậy có hai điểm \({M_1}\left( {3 + \sqrt 5 ;1 + \sqrt 5 } \right)\) và \({M_2}\left( {3 - \sqrt 5 ;1 - \sqrt 5 } \right)\).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”