Bài 2. Liên hệ giữa cung và dây

Bài Tập và lời giải

Trả lời câu hỏi 2 Bài 2 trang 71 Toán 9 Tập 2

Xem hình 11

 

Hãy viết giả thiết và kết luận của định lý 2

Xem lời giải

Bài 10 trang 71 SGK Toán 9 tập 2

a) Vẽ đường tròn tâm \(O\) bán kính \(R = 2\) cm. Nêu cách vẽ cung \(\overparen{AB}\) có số đo bằng \(60^0\). Hỏi dây \(AB\) dài bao nhiêu xentimet?

b) Làm thế nào để chia được đường tròn thành sáu cung bằng nhau như trên hình 12.

Xem lời giải

Bài 11 trang 72 SGK Toán 9 tập 2

Cho hai đường tròn bằng nhau \((O)\) và \((O')\) cắt nhau tại hai điểm \(A\) và \(B\). Kẻ các đường kính \(AOC, AO'D\). Gọi \(E\) là giao điểm thứ hai của \(AC\) với đường tròn \((O')\).

a) So sánh các cung nhỏ \(\overparen{BC}, \overparen{BD}\).

b) Chứng minh rằng \(B\) là điểm chính giữa của cung \(\overparen{EBD}\) ( tức điểm \(B\) chia cung \(\overparen{EBD}\) thành hai cung bằng nhau: \(\overparen{BE}\) =  \(\overparen{BD}\) ).

Xem lời giải

Bài 12 trang 72 SGK Toán 9 tập 2

 Cho tam giác \(ABC\). Trên tia đối của tia \(AB\) lấy một điểm \(D\) sao cho \(AD = AC\). Vẽ đường tròn tâm \(O\) ngoại tiếp tam giác \(DBC\). Từ \(O\) lần lượt hạ các đường vuông góc \(OH\), \(OK\) với \(BC\) và \(BD\) \((H \in BC, K \in BD)\).

a) Chứng minh rằng \(OH > OK\).

b) So sánh hai cung nhỏ \(\overparen{BD}\) và \(\overparen{BC}\).

Xem lời giải

Bài 13 trang 72 SGK Toán 9 tập 2

 Chứng minh rằng trong một đường tròn, hai cung bị chắn giữa hai dây song song thì bằng nhau.

Xem lời giải

Bài 14 trang 72 SGK Toán 9 tập 2

a) Chứng minh rằng đường kính đi qua điểm chính giữa của một cung thì đi qua trung điểm của dây căng cung ấy. Mệnh đề đảo có đúng không? Hãy nêu thêm điều kiện để mệnh đề đảo đúng.

b) Chứng minh rằng đường kính đi qua điểm chính giữa của một cung thì vuông góc với dây căng cung ấy và ngược lại 

Xem lời giải

Đề kiểm tra 15 phút - Đề số 1 - Bái 2 - Chương 3 - Hình học 9

Cho ∆ABC đều. Trên nửa mặt phẳng bờ BC không chứa điểm A. Vẽ nửa đường tròn đường kính BC. Lấy D, E trên nửa đường tròn sao cho \(\overparen{ BD} = \overparen{ DE} = \overparen{ EC}\).  Gọi I, J lần lượt là giao điểm của AD, AE với BC. Chứng minh rằng: \(BI = IJ = JC.\)

Xem lời giải

Đề kiểm tra 15 phút - Đề số 2 - Bài 2 - Chương 3 - Hình học 9

Cho tam giác ABC. Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Vẽ đường tròn tâm O ngoại tiếp ∆BDC. Từ O lần lượt kẻ các đường vuông góc OH, OK với BC và BD ( H \( \in \) BC, K \( \in \) BD).

a) Chứng minh OH > OK.

b) So sánh hai cung nhỏ \(\overparen{ BD}\) và \(\overparen{ BC}.\)

Xem lời giải

Đề kiểm 15 phút - Đề số 3 - Bài 2 - Chương 3 - Hình học 9

Trên dây cung AB của một đường tròn (O), có hai điểm C và D chia dây này ba đoạn bằng nhau: \(AC = CD = DB.\) Các bán kính qua C và D cắt cung nhỏ AB lần lượt tại E và F. Chứng minh rằng các điểm E và F chia cung nhỏ AB thành ba cung : \(\overparen{AE}, \overparen{ EF}, \overparen{FB}\) thỏa mãn điều kiện: \(\overparen{AE} = \overparen{FB}<\overparen{EF}\)

Xem lời giải

Đề kiểm 15 phút - Đề số 4 - Bài 2 - Chương 3 - Hình học 9

Cho hai đường tròn (O) và (O’) bằng nhau và cắt nhau tại hai điểm phân biệt A và B. Kẻ các đường kính AOC và AO’D. Hãy so sánh các cung: \(\overparen{ BC}\) và \(\overparen{BD}\) của (O) và (O’).

Xem lời giải

Đề kiểm tra 15 phút - Đề số 5 - Bài 2 - Chương 3 - Hình học 9

Cho hai đường tròn đồng tâm (O; R) và (O; R’). Lấy điểm P trên (O; R) kẻ hai tia Px và Py không đi qua O và cắt hai đường tròn lần lượt tại A, B, C ( A, B \( \in \) ( O; R’)) và D, E, F ( E, D \( \in \) (O; R’)). Biết rằng AB < DE. Chứng minh rằng: \(\overparen{ PC}<\overparen{PF}\)

Xem lời giải

Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”