Đề bài
Áp dụng tính chất giao hoán và tính chất phân phối của tích vô hướng hãy chứng minh các kết quả sau đây:
\({(\overrightarrow a + \overrightarrow b )^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + 2\overrightarrow a .\overrightarrow b \);
\({(\overrightarrow a - \overrightarrow b )^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} - 2\overrightarrow a .\overrightarrow b \);
\((\overrightarrow a + \overrightarrow b )(\overrightarrow a - \overrightarrow b ) = {\left| {\overrightarrow a } \right|^2} - {\left| {\overrightarrow b } \right|^2}\);
Đề bài
Tam giác ABC vuông tại A và có \(AB = AC = a\). Tính:
a) \(\overrightarrow {AB} .\overrightarrow {AC} \);
b) \(\overrightarrow {BA} .\overrightarrow {BC} \)
c) \(\overrightarrow {AB} .\overrightarrow {BC} \).
Đề bài
Cho tam giác \(ABC\) có \(AB = 5 cm, BC = 7 cm, CA = 8 cm\).
a) Tính \(\overrightarrow {AB} .\overrightarrow {AC} \) rồi suy ra giá trị của góc \(A\);
b) Tính \(\overrightarrow {CA} .\overrightarrow {CB} \).
Đề bài
Tam giác ABC có AB = 6 cm, AC = 8 cm, BC = 11 cm.
a) Tính \(\overrightarrow {AB} .\overrightarrow {AC} \) và chứng tỏ rằng tam giác \(ABC\) có góc \(A\) tù.
b) Trên cạnh AB lấy điểm M sao cho AM = 2 cm và gọi N là trung điểm của cạnh AC. Tính \(\overrightarrow {AM} .\overrightarrow {AN} \).
Đề bài
Cho tam giác ABC cân (AB = AC). Gọi H là trung điểm của cạnh BC, D là hình chiếu vuông góc của H trên cạnh AC, M là trung điểm của đoạn HD. Chứng minh rằng AM vuông góc với BD.
Đề bài
Cho hai véc tơ \(\overrightarrow a \) và \(\overrightarrow b \) có \(\left| {\overrightarrow a } \right| = 5,\left| {\overrightarrow b } \right| = 12\) và \(\left| {\overrightarrow a + \overrightarrow b } \right| = 13\). Tính tích vô hướng \(\overrightarrow a .(\overrightarrow a + \overrightarrow b )\) và suy ra góc giữa hai vec tơ \(\overrightarrow a \) và \(\overrightarrow a + \overrightarrow b \).
Đề bài
Cho tam giác ABC. Gọi H là trực tâm của tam giác và M là trung điểm của cạnh BC. Chứng minh rằng \(\overrightarrow {MH} .\overrightarrow {MA} = \dfrac{1}{4}B{C^2}\).
Đề bài
Trong mặt phẳng Oxy cho tam giác ABC với \(A = (2;4),B( - 3;1)\) và \(C = (3; - 1)\). Tính:
a) Tọa độ điểm D để tứ giác ABCD là hình bình hành;
b) Tọa độ chân \(A'\) của đường cao vẽ từ đỉnh A.
Đề bài
Trong mặt phẳng Oxy cho ba điểm \(A( - 1; - 1),B(3;1)\)và C(6;0)
a) Chứng minh ba điểm A, B, C không thẳng hàng.
b) Tính góc B của tam giác ABC.
Đề bài
Trong mặt phẳng Oxy cho hai điểm A(5;4) và B(3;-2). Một điểm M di động trên trục hoành Ox. Tìm giá trị nhỏ nhất của \(\left| {\overrightarrow {MA} + \overrightarrow {MB} } \right|\).
Đề bài
Trong mặt phẳng Oxy cho bốn điểm \(A(3;4),B(4;1),C(2; - 3),D( - 1;6)\). Chứng minh tứ giác ABCD nội tiếp được trong một đường tròn.