a) Trong \((ABC)\), gọi \(E = AH ∩ BC\).
\(H\) là trực tâm của tam giác \(ABC\) nên \(AE\bot BC\) (1)
\(SA\bot (ABC)\Rightarrow SA\bot BC\) (2)
Từ (1) và (2) suy ra \(BC ⊥ (SAE)\)\( \Rightarrow BC ⊥ SE\).
\(K\) là trực tâm của tam giác \(SBC\Rightarrow SE \) đi qua \(K\) \(\Rightarrow AH, BC, SK\) đồng quy tại \(E\).
b) Trong \((ABC)\) gọi \(F = BH ∩ AC\), trong \((SBC)\) gọi \(D = BK ∩ SC\). Khi đó \((BHK) \equiv (BDF)\).
Ta có:
\(\left\{ \begin{array}{l}
BF \bot AC\\
BF \bot SA\,\,\left( {SA \bot \left( {ABC} \right)} \right)
\end{array} \right. \Rightarrow BF \bot \left( {SAC} \right)\\ \Rightarrow BF \bot SC\)
\(\left\{ \begin{array}{l}SC \bot BF\\SC \bot BD\end{array} \right. \Rightarrow SC \bot \left( {BDF} \right) \Rightarrow SC \bot \left( {BHK} \right)\)
Ta có:
\(\begin{array}{l}SC \bot \left( {BHK} \right) \Rightarrow SC \bot HK\\BC \bot \left( {SAE} \right) \Rightarrow BC \bot HK\\ \Rightarrow HK \bot \left( {SBC} \right)\end{array}\)
c) \(\left\{ \begin{array}{l}AE \bot SA\,\,\left( {SA \bot \left( {ABC} \right)} \right)\\AE \bot BC\,\,\left( {gt} \right)\end{array} \right. \Rightarrow AE \) là đường vuông góc chung của \(BC\) và \(SA\).