Hãy liệt kê tất cả các số gồm ba chữ số khác nhau từ các chữ số 1, 2, 3.
Trong giờ học môn Giáo dục quốc phòng, một tiểu đội học sinh gồm 10 người được xếp thành một hàng dọc. Hỏi có bao nhiêu cách xếp?
Trên mặt phẳng, cho bốn điểm phân biệt A, B, C, D. Liệt kê tất cả các vectơ khác vectơ – không mà điểm đầu và điểm cuối của chúng thuộc tập điểm đã cho.
Cho tập A = {1, 2, 3, 4, 5}. Hãy liệt kê các tổ hợp chập 3, chập 4 của 5 phần tử của A.
Có 16 đội bóng đá tham gia thi đấu. Hỏi cần phải tổ chức bao nhiêu trận đấu sao cho hai đội bất kì đề gặp nhau đúng một lần?
Từ các số \(1, 2, 3, 4, 5, 6\) lập các số tự nhiên gồm sáu chữ số khác nhau. Hỏi:
a)
Có tất cả bao nhiêu số?
Phương pháp:
Sử dụng hoán vị 6 phần tử.
Có bao nhiêu cách để sắp xếp chỗ ngồi cho mười người khách vào mười ghế kê thành một dãy ?
Giả sử có bảy bông hoa màu khác nhau và ba lọ khác nhau. Hỏi có bao nhiêu cách cắm ba bông hoa vào ba lọ đã cho (mỗi lọ cắm một bông) ?
Có bao cách mắc nối tiếp \(4\) bóng đèn được chọn từ \(6\) bóng đèn khác nhau ?
Có bao nhiêu cách cắm \(3\) bông hoa vào \(5\) lọ khác nhau (mỗi lọ cắm không quá một bông) nếu:
a) Các bông hoa khác nhau ?
b) Các bông hoa như nhau ?
Trong mặt phẳng, cho sáu điểm phân biệt sao cho không có ba điểm nào thẳng hàng. Hỏi có thể lập được bao nhiêu tam giác mà các đỉnh của nó thuộc tập điểm đã cho ?
Trong mặt phẳng có bao nhiêu hình chữ nhật được tạo thành từ bốn đường thẳng song song với nhau và năm đường thẳng vuông góc với bốn đường thẳng song song đó ?