Lấy \(A(2;0), B(0;2)\) thuộc \(d\)
Ta có: \({Q_{\left( {O;{{90}^0}} \right)}}\left( A \right) = B,{Q_{\left( {O;{{90}^0}} \right)}}\left( B \right) = A'\) nên \({Q_{\left( {O;{{90}^0}} \right)}}\) biến đường thẳng \(AB\) thành đường thẳng \(BA'\) hay biến đường thẳng \(d\) thành đường thẳng \(BA'\).
Mà \(B\left( {0;2} \right),A'\left( { - 2;0} \right)\) nên đường thẳng \(A'B\) có phương trình \(\dfrac{x}{{ - 2}} + \dfrac{y}{2} = 1\).
Chú ý: Phương trình đường thẳng theo đoạn chắn \(A\left( {a;0} \right),B\left( {0;b} \right)\) \( \Rightarrow AB:\dfrac{x}{a} + \dfrac{y}{b} = 1\) với \(ab \ne 0\).