Bài 29
Làm tính nhân phân thức :
\(\eqalign{
& a)\;{{30{x^3}} \over {11{y^2}}}.{{121{y^5}} \over {25x}} \cr
& b)\;{{24{y^5}} \over {7{x^2}}}.\left( { - {{21x} \over {12{y^3}}}} \right) \cr
& c)\;\left( { - {{18{y^3}} \over {25{x^4}}}} \right).\left( { - {{15{x^2}} \over {9{y^3}}}} \right) \cr
& d)\;{{4x + 8} \over {{{\left( {x - 10} \right)}^3}}}.{{2x - 20} \over {{{\left( {x + 2} \right)}^2}}} \cr
& e)\;{{2{x^2} - 20x + 50} \over {3x + 3}}.{{{x^2} - 1} \over {4{{\left( {x - 5} \right)}^3}}} \cr} \)
Đề bài
Rút gọn biểu thức (chú ý dùng quy tắc đổi dấu để thấy nhân tử chung) :
a) \(\displaystyle{{x + 3} \over {{x^2} - 4}}.{{8 - 12x + 6{x^2} - {x^3}} \over {9x + 27}}\)
b) \(\displaystyle{{6x - 3} \over {5{x^2} + x}}.{{25{x^2} + 10x + 1} \over {1 - 8{x^3}}}\)
c) \(\displaystyle{{3{x^2} - x} \over {{x^2} - 1}}.{{1 - {x^4}} \over {{{\left( {1 - 3x} \right)}^3}}}\)
Đề bài
Phân tích các tử thức và các mẫu thức (nếu cần thì dùng phương pháp thêm và bớt cùng một số hạng hoặc tách một số hạng thành hai số hạng) rồi rút gọn biểu thức :
a) \(\displaystyle{{x - 2} \over {x + 1}}.{{{x^2} - 2x - 3} \over {{x^2} - 5x + 6}}\)
b) \(\displaystyle{{x + 1} \over {{x^2} - 2x - 8}}.{{4 - x} \over {{x^2} + x}}\)
c) \(\displaystyle{{x + 2} \over {4x + 24}}.{{{x^2} - 36} \over {{x^2} + x - 2}}\)
Đề bài
Áp dụng tính chất phân phối của phép nhân đối với phép cộng để rút gọn biểu thức :
a) \(\displaystyle{{{x^3}} \over {x + 1975}}.{{2x + 1954} \over {x + 1}} \) \(\displaystyle + {{{x^3}} \over {x + 1975}}.{{21 - x} \over {x + 1}}\)
b) \(\displaystyle{{19x + 8} \over {x - 7}}.{{5x - 9} \over {x + 1945}} \) \(\displaystyle- {{19x + 8} \over {x - 7}}.{{4x - 2} \over {x + 1945}}\)
Đề bài
Tính tích \(x,\, y\) , biết rằng \(x\) và \(y\) thỏa mãn các đẳng thức sau (\(a,\, b\) là các hằng số) :
a) \(\displaystyle\left( {4{a^2} - 9} \right)x = 4a + 4\) với \(\displaystyle a ≠ \pm {3 \over 2}\) và \(\displaystyle\left( {3{a^3} + 3} \right)y = 6{a^2} + 9a\) với \(\displaystyle a ≠ − 1\).
b) \(\displaystyle\left( {2{a^3} - 2{b^3}} \right)x - 3b = 3a\) với \(\displaystyle a ≠ b\) và \(\displaystyle\left( {6a + 6b} \right)y = {\left( {a - b} \right)^2}\) với \(\displaystyle a ≠ − b\).
Chú ý rằng: \(\displaystyle{a^2} + ab + {b^2} = {a^2} + 2a.{b \over 2} + {{{b^2}} \over 4} + {{3{b^2}} \over 4} \) \(\displaystyle = {\left( {a + {b \over 2}} \right)^2} + {{3{b^2}} \over 4} \ge 0\).
Do đó nếu \(a ≠ 0\) hoặc \(b ≠ 0\) thì \(\displaystyle{a^2} + ab + {b^2} > 0\)
Đề bài
Rút gọn biểu thức :
a) \(\displaystyle{{{x^4} + 15x + 7} \over {2{x^3} + 2}}.{x \over {14{x^2} + 1}}.\) \(\displaystyle {{4{x^3} + 4} \over {{x^4} + 15x + 7}}\)
b) \(\displaystyle{{{x^7} + 3{x^2} + 2} \over {{x^3} - 1}}.{{3x} \over {x + 1}}.{{{x^2} + x + 1} \over {{x^7} + 3{x^2} + 2}}\)
Đề bài
Đố: Đố em điền được một phân thức vào chỗ trống trong đẳng thức sau :
\(\displaystyle{1 \over x}.{x \over {x + 1}}.{{x + 1} \over {x + 2}}.{{x + 2} \over {x + 3}}.{{x + 3} \over {x + 4}}\) \(\displaystyle.{{x + 4} \over {x + 5}}.{{x + 5} \over {x + 6}}.{{x + 6} \over {x + 7}}.{{x + 7} \over {x + 8}}.{{x + 8} \over {x + 9}}\) \(\displaystyle .{{x + 9} \over {x + 10}}.\;... = 1\)
Đề bài
Thực hiện các phép tính sau bằng hai cách : dùng tính chất phân phối của phép nhân đối với phép cộng và không dùng tính chất này :
Đề bài
Thực hiện phép nhân :
\(\displaystyle{1 \over {1 - x}}.{1 \over {1 + x}}.{1 \over {1 + {x^2}}}.{1 \over {1 + {x^4}}}.\) \(\displaystyle {1 \over {1 + {x^8}}}.{1 \over {1 + {x^{16}}}}\)