Bài 2 trang 49 SGK Đại số 10

Lập bảng biến thiên và vẽ đồ thị của các hàm số.

a) \(y = 3x^2- 4x + 1\);            

b) \(y = - 3x^2+ 2x – 1\);

c) \(y = 4x^2- 4x + 1\);            

d) \(y = - x^2+ 4x – 4\);

e) \(y = 2x^2+ x + 1\);              

f) \(y = - x^2+ x - 1\).

Lời giải

a) \(y = 3x^2- 4x + 1\)

Bảng biến thiên:

Đồ thị:

- Đỉnh: \(I\left( {{2 \over 3}; - {1 \over 3}} \right)\)

- Trục đối xứng: \(x = {2 \over 3}\)

- Giao điểm với trục tung \(A(0; 1)\)

- Giao điểm với trục hoành \(B\left( {{1 \over 3};0} \right)\), \(C(1; 0)\).

b) \(y = - 3x^2+ 2x – 1\)

Bảng biến thiên:

Vẽ đồ thị:

- Đỉnh \(I\left( {{1 \over 3}; - {2 \over 3}} \right)\), trục đối xứng: \(x = {1 \over 3}\)

- Giao điểm với trục tung \(A(0;- 1)\).

- Giao điểm với trục hoành: không có.

Ta xác định thêm điểm phụ: \(B(1;- 2)\), \(C(1;- 6)\).

c) \(y = 4x^2- 4x + 1\).

Lập bảng biến thiên:

Đồ thị:

+ Đỉnh \(I\left( {\dfrac{1}{2};0} \right)\), trục đối xứng \(x=\dfrac{1}{2}\)

+ Tiếp xúc với trục Ox tại I.

+ Cắt trục Oy tại \(A(0;1)\).

d) \(y = - x^2+ 4x – 4\)

Bảng biến thiên:

Đồ thị:

+ Đỉnh \(I(2;0)\), trục đối xứng \(x=2\).

+ Tiếp xúc với trục Ox tại \(I\).

+ Cắt Oy tại \(A(0;-4)\).

+ Lấy thêm hai điểm phụ \((1;-1)\) và \((3;-1)\).

e)  \(y = 2x^2+ x + 1\);   

- Đỉnh \(I\left( {{{ - 1} \over 4};{{ 7} \over 8}} \right)\)

- Trục đối xứng: \(x = {{ - 1} \over 4}\)

- Giao \(Ox\): Đồ thị không giao với trục hoành

- Giao \(Oy\): Giao với trục tung tại điểm \((0;1)\)

Bảng biến thiên:

Vẽ đồ thị theo bảng sau:

x

-2

-1

0

1

2

y

7

2

1

4

11

f) \(y = - x^2+ x - 1\).

- Đỉnh  \(I\left( {{1 \over 2};{{ - 3} \over 4}} \right)\)

- Trục đối xứng: \(x = {1 \over 2}\)

- Giao Ox: Đồ thị không giao với trục hoành

- Giao Oy: Giao với trục tung tại điểm \((0;-1)\)

Bảng biến thiên:

Vẽ đồ thị theo bảng sau:

x

-2

-1

0

1

2

y

-7

-3

-1

-1

-3