Bài 2 trang 91 SGK Hình học 12

Trong hệ toạ độ \(Oxyz\), cho mặt cầu \((S)\) có đường kính là \(AB\) biết rằng \(A( 6 ; 2 ; -5), B(-4 ; 0 ; 7)\).

a) Tìm toạ độ tâm \(I\) và tính bán kính \(r\) của mặt cầu \((S)\)

b) Lập phương trình của mặt cầu \((S)\).

c) Lập phương trình của mặt phẳng \((α)\) tiếp xúc với mặt cầu \((S)\) tại điểm \(A\).

Lời giải

a) Tâm \(I\) của mặt cầu là trung điểm của đoạn thẳng \(AB\): \(I\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2};\frac{{{z_A} + {z_B}}}{2}} \right) = \left( {1;1;1} \right)\)                 

\(A{B^2} = {\rm{ }}{\left( { - 4{\rm{ }} - {\rm{ }}6} \right)^2} + {\rm{ }}{\left( {{\rm{ }}0{\rm{ }} - {\rm{ }}2} \right)^2} + {\rm{ }}{\left( {7{\rm{ }} + {\rm{ }}5} \right)^2} = {\rm{ }}248\)

\( \Rightarrow AB = \sqrt {248}  = 2\sqrt {62} \)

Vậy \(R = {{AB} \over 2} = \sqrt {62} \)

b) Phương trình mặt cầu \((S)\)

\({\left( {x{\rm{ }} - {\rm{ }}1} \right)^2}{\rm{ }} + {\rm{ }}{\left( {y{\rm{ }} - {\rm{ }}1} \right)^2} + {\rm{ }}{\left( {z{\rm{ }} - {\rm{ }}1} \right)^{2}} = {\rm{ }}62\)

\( \Leftrightarrow \) \({x^2}{\rm{ }} + {\rm{ }}{y^2} + {\rm{ }}{z^2} - {\rm{ }}2x{\rm{ }} - {\rm{ }}2y{\rm{ }} - {\rm{ }}2z{\rm{ }} - {\rm{ }}59{\rm{ }} = {\rm{ }}0\)

c) Mặt phẳng tiếp xúc với mặt cầu tại điểm \(A\) chính là mặt phẳng qua \(A\) và vuông góc với bán kính \(IA\). Ta có:

\(\overrightarrow {IA}  = (5; 1 ; -6)\)

Phương trình mặt phẳng cần tìm là: \(5(x - 6) + 1(y - 2) - 6(z + 5) = 0\)

\( \Leftrightarrow 5x + y - 6z - 62 = 0\)


Bài Tập và lời giải

Bài 18 trang 68 SBT toán 7 tập 1

Đề bài

Cho biết \(x\) và \(y\) là hai đại lượng tỉ lệ nghịch.

a) Thay các dấu "?" bằng các số thích hợp trong bảng dưới đây.

x

1 = 2

x2 = 3

x3 = 5

x4 = 6

y

y1 = 15

y2 = ?

y3 = ?

y4 = ?

xy

x1y1 = ?

x2y2 = ?

x3y3 = ?

x4y4 = ?

b) Có nhận xét gì về tích các giá trị tương ứng của \(x\) và \(y\) \(({x_1}{y_1},{x_2}{y_2},{x_3}{y_3},{x_4}{y_4})?\)

Xem lời giải

Bài 19 trang 68 SBT toán 7 tập 1

Đề bài

Cho biết \(x\) và \(y\) là hai đại lượng tỉ lệ nghịch và khi \(x = 7\) thì \(y =10\).

a) Hãy tìm hệ số tỉ lệ nghịch của \(y\) đối với \(x\).

b) Hãy biểu diễn \(y\) theo \(x\).

c) Tính giá trị của \(y\) khi \(x = 5;  x = 14\).

Xem lời giải

Bài 20 trang 68 SBT toán 7 tập 1

Đề bài

Cho biết \(x\) và \(y\) là hai đại lương tỉ lệ nghịch. Điền các số thích hợp vào các ô trống trong bảng sau:

x

1

2,5

 

 

8

10

y

 

-4

-2,5

-2

 

 

Xem lời giải

Bài 21 trang 69 SBT toán 7 tập 1
Cho biết ba máy cày, cày xong một cánh đồng hết \(30\) giờ. Hỏi năm máy cày như thế (cùng năng suất) cày xong cánh đồng đó hết bao nhiêu giờ?

Xem lời giải

Bài 22 trang 69 SBT toán 7 tập 1

Đề bài

Một ô tô chạy từ A đến B với vận tốc \(45km/h\) hết \(3\) giờ \(15\) phút. Hỏi chiếc ô tô đó chạy từ A đến B với vận tốc \(65km/h\) sẽ hết bao nhiêu thời gian?

Xem lời giải

Bài 23 trang 69 SBT toán 7 tập 1
Cho biết \(56\) công nhân hoàn thành một công việc trong \(21\) ngày. Hỏi cần phải tăng thêm bao nhiêu công nhân nữa để có thể hoàn thành công việc đó trong \(14\) ngày? (Năng suất của các công nhân là như nhau).

Xem lời giải

Bài 24 trang 69 SBT toán 7 tập 1

Đề bài

Đố: Một thỏi vàng hình hộp chữ nhật (hình dưới) có chiều dài 5cm, mặt cắt ngang (đáy) là một hình vuông cạnh 1cm. Từ thỏi vàng đó người ta làm thành một dây vàng cũng hình hộp chữ nhật. Đố em biết chiều dài của dây vàng đó bằng bao nhiêu nếu mặt cắt ngang của nó là hình vuông cạnh 1mm?

Xem lời giải

Bài 3.1, 3.2 phần bài tập bổ sung trang 69 SBT toán 7 tập 1

Bài 3.1

Tìm lỗi. Cho \(x\) tỉ lệ nghịch với \(y\) và \(y\) tỉ lệ nghịch với \( z\). Hãy cho biết mối quan hệ giữa \(x\) và \(z.\) Hãy nhận xét hai trả lời sau đây của hai bạn.

Bài giải của bạn Hùng:

\(\left\{ \begin{array}{l}x = \dfrac{y}{a}\left( {a \ne 0} \right)\\y = \dfrac{z}{b}\left( {b \ne 0} \right)\end{array} \right.\)\(\, \Rightarrow x = \dfrac{z}{b}:a = \dfrac{z}{{ab}}\left( {ba \ne 0} \right)\)

Vậy \(x\) tỉ lệ nghịch với \(z\) theo hệ số tỉ lệ \(b.a\).

Bài giải của bạn Hoa

\(\left\{ \begin{array}{l}x = \dfrac{a}{y}\left( {a \ne 0} \right)\\y = \dfrac{b}{z}\left( {b \ne 0} \right)\end{array} \right.\)\(\, \Rightarrow x = \dfrac{a}{{\dfrac{b}{z}}} = \dfrac{{a.z}}{b} = \dfrac{a}{b}.z\left( {\dfrac{a}{b} \ne 0} \right)\)

Vậy \(x\) tỉ lệ thuận với \(z\) theo hệ số tỉ lệ \(\dfrac{a}{b}.\)


Xem lời giải

Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”