a) \(\overrightarrow{AB}.\overrightarrow{CD}=\overrightarrow{AB}.(\overrightarrow{AD}-\overrightarrow{AC})\)
\(\overrightarrow{AC}.\overrightarrow{DB}=\overrightarrow{AC}.(\overrightarrow{AB}-\overrightarrow{AD})\)
\(\overrightarrow{AD}.\overrightarrow{BC}=\overrightarrow{AD}.(\overrightarrow{AC}-\overrightarrow{AB}).\)
Cộng từng vế ba đẳng thức trên ta được:
\(\overrightarrow {AB} .\overrightarrow {CD} + \overrightarrow {AC} .\overrightarrow {DB} + \overrightarrow {AD} .\overrightarrow {BC} \) \( = \overrightarrow {AC} \left( {\overrightarrow {AD} - \overrightarrow {AC} } \right)\) \( + \overrightarrow {AC} .\left( {\overrightarrow {AB} - \overrightarrow {AD} } \right)\) \( + \overrightarrow {AD} \left( {\overrightarrow {AC} - \overrightarrow {AB} } \right)\)
\( = \overrightarrow {AB} .\overrightarrow {AD} - \overrightarrow {AB} .\overrightarrow {AC} \) \( + \overrightarrow {AC} .\overrightarrow {AB} - \overrightarrow {AC} .\overrightarrow {AD} \) \( + \overrightarrow {AD} .\overrightarrow {AC} - \overrightarrow {AD} .\overrightarrow {AB} \)
\( = \overrightarrow {AB} .\overrightarrow {AD} - \overrightarrow {AD} .\overrightarrow {AB} \) \( + \overrightarrow {AC} .\overrightarrow {AB} - \overrightarrow {AB} .\overrightarrow {AC} \) \( + \overrightarrow {AD} .\overrightarrow {AC} - \overrightarrow {AC} .\overrightarrow {AD} \)
\( = \overrightarrow 0 + \overrightarrow 0 + \overrightarrow 0 = \overrightarrow 0 \)
b) \(AB ⊥ CD \Rightarrow \overrightarrow{AB}.\overrightarrow{CD}=0,\)
\(AC ⊥ DB \Rightarrow \overrightarrow{AC}.\overrightarrow{DB}=0\)
Từ đẳng thức câu a ta có:
\(\Rightarrow\overrightarrow{AD}.\overrightarrow{BC}=0\Rightarrow AD ⊥ BC\).