Bài 2 trang 99 SGK Hình học 12

Cho khối lập phương \(ABCD.A'B'C'D'\) cạnh bằng \(a\). Gọi \(E\) và \(F\) lần lượt là trung điểm của \(B'C'\) và \(C'D'\). Mặt phẳng \((AEF)\) chia khối lập phương đó thành hai khối đa diện (H) và (H') trong đó (H) là khối đa diện chứa đỉnh \(A'\). Tính thể tích của (H).

Lời giải

Cách vẽ thiết diện:

Ta có \(EF // B'D'\) mà \(B'D' // BD\) nên từ \(A\) kẻ đường song song với \(BD\), cắt \(CD\) kéo dài tại \(D_1\) và \(CB\) kéo dài tại \(B_1\).

Nối \(B_1E\) cắt \(BB'\) tại \(G\). Nối \(D_1F\) cắt \(DD'\) tại \(K\).

Thiết diện là ngũ giác \(AGEFK\).

Hình (H) là khối \(AGEFK.A'B'D'\).

Theo giả thiết \(E\) là trung điểm của \(B'C'\); \(F\) là trung điểm của \(C'D'\), ta có \(BB_1= BC = a = 2B'E\) \( \Rightarrow BG = 2GB' = {2 \over 3}a\)

Từ đó \({V_{A.B{B_1}G}} = \frac{1}{3}AB.{S_{B{B_1}G}} = \frac{1}{3}a.\frac{1}{2}.a.\frac{2}{3}a = \frac{{{a^3}}}{9} = {V_1}\)

\({V_{(A.D{D_1}K)}} = {1 \over 3}.{S_{\Delta D{D_1}K}}.AD = {1 \over 9}{a^3} = {V_2}\)

Ta có:

\({S_{\Delta C{B_1}{D_1}}} = {1 \over 2}C{B_1}.C{D_1} = 2{a^2}\);

\({S_{\Delta EC'F}} = {1 \over 2}.C'E.C'F = {{{a^2}} \over 8}\)

Chiều cao hình chóp cụt \(CB_1D_1.C'EF \)là \(CC' = a\)

\({V_{C{C_1}{D_1}.C'EF}} = {1 \over 3}a\left( {2{a^2} + {{{a^2}} \over 8} + {{{a^2}} \over 2}} \right) = {{7{a^3}} \over 8}\)

Thể tích của khối (H') bằng:

\({V_{(H')}} = {V_{C{C_1}{D_1}.C'EF}} - ({V_1} + {V_2}) = {7 \over 8}{a^3} - {2 \over 9}{a^3} = {{47} \over {72}}{a^3}\)

Từ đó thể tích của khối (H) bằng:

\({V_{(H)}} = V\)lập phương\(-V\)(H') = \(a^3 - {{47} \over {72}}{a^3} = {{25} \over {72}}{a^3}\)


Bài Tập và lời giải

Bài 34 trang 24 SBT toán 7 tập 2

Đề bài

Cho ví dụ một đa thức một biến mà:

a) Có hệ số cao nhất bằng \(10,\) hệ số tự do bằng \(-1\)

b) Chỉ có ba hạng tử. 

Xem lời giải

Bài 35 trang 24 SBT toán 7 tập 2

Đề bài

Thu gọn các đa thức sau và sắp xếp theo lũy thừa giảm của biến: 

a) \(\displaystyle {\rm{}}{x^5} - 3{{\rm{x}}^2} + {x^4} - {1 \over 2}x \)\(- {x^5} + 5{{\rm{x}}^4} + {x^2} - 1\) 

b) \(\displaystyle x - {x^9} + {x^2} - 5{{\rm{x}}^3} + {x^6} - x \)\(+ 3{{\rm{x}}^9} + 2{{\rm{x}}^6} - {x^3} + 7\)

Xem lời giải

Bài 36 trang 24 SBT toán 7 tập 2

Đề bài

Thu gọn và sắp xếp các số hạng của đa thức theo lũy thừa tăng của biến. Tìm hệ số cao nhất, hệ số tự do:

a) \(\displaystyle {\rm{}}{x^7} - {x^4} + 2{{\rm{x}}^3} - 3{{\rm{x}}^4} \)\(\displaystyle - {x^2} + {x^7} - x + 5 - {x^3}\) 

b) \(\displaystyle 2{{\rm{x}}^2} - 3{{\rm{x}}^4} - 3{{\rm{x}}^2}\)\(\displaystyle - 4{{\rm{x}}^5} - {1 \over 2}x - {x^2} + 1\)

Xem lời giải

Bài 37 trang 25 SBT toán 7 tập 2

Đề bài

Tính giá trị của các đa thức sau: 

a) \({x^2} + {x^4} + {x^6} +{x^8} + ... + {x^{100}}\) tại \(x = -1\)

b) \(a{x^2} + bx + c\) tại \(x = -1; x = 1\) \((a, b, c\) là hằng số).

Xem lời giải

Bài 7.1, 7.2 phần bài tập bổ sung trang 25 SBT toán 7 tập 2

Bài 7.1

Cho

\(f\left( x \right) = {x^5} + 3{{\rm{x}}^2} - 5{{\rm{x}}^3} - {x^7} \)\(+ {x^3} + 2{{\rm{x}}^2} + {x^5} - 4{{\rm{x}}^2} + {x^7}\)

\(g\left( x \right) = {x^4} + 4{{\rm{x}}^3} - 5{{\rm{x}}^8} - {x^7} + {x^3} \)\(+ {x^2} - 2{{\rm{x}}^7} + {x^4} - 4{{\rm{x}}^2} - {x^8}\)

Thu gọn và sắp xếp các đa thức \(f(x)\) và \(g(x)\) theo luỹ thừa giảm của biến rồi tìm bậc của đa thức đó.


Xem lời giải