Bài 20 trang 115 SGK Toán 7 tập 1

Đề bài

 Cho góc \(xOy\) (h.73), Vẽ cung tròn tâm \(O\), cung tròn này cắt \(Ox, Oy\)  theo thứ tự ở \(A,B\) (1). Vẽ các cung tròn tâm \(A\) và tâm \(B\) có cùng bán kính sao cho chúng cắt nhau ở điểm \(C\) nằm trong góc \(xOy\) ((2) (3)). Nối \(O\) với \(C\) (4). Chứng minh \(OC\) là tia phân giác của góc \(xOy\).

Lời giải

Vẽ cung tròn tâm \(O\), cung tròn này cắt \(Ox, Oy\)  theo thứ tự ở \(A,B\)  do đó \(OA=OB\) vì cùng bằng bán kính của cung tròn

Cung tròn tâm \(A\) và tâm \(B\) có cùng bán kính nên ta gọi bán kính là \(r\)

\(C\) là giao của hai cung tròn do đó \(C\) thuộc cung tròn tâm \(A\) nên \(AC=r;\) \(C\) thuộc cung tròn tâm \(B\) nên \(BC=r\)

Suy ra \(AC=BC\) 

Nối \(BC, AC\).

Xét \(∆OBC\) và \(∆OAC\) có:

+) \(OB=OA\) (chứng minh trên)

+) \(BC=AC\) (chứng minh trên)

+) \(OC\)  cạnh chung

\( \Rightarrow ∆OBC = ∆OAC(c.c.c)\)

\( \Rightarrow \widehat{BOC}=\widehat{AOC}\) (hai góc tương ứng)

Vậy \(OC\) là tia phân giác của góc \(xOy\).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”