Bài 2.1 phần bài tập bổ sung trang 25 SBT toán 8 tập 1

Đề bài

Hãy điền vào chỗ trống một đa thức thích hợp để được đẳng thức: 

a) \(\displaystyle {{x + 5} \over {3x - 2}} = {{...} \over {x\left( {3x - 2} \right)}}\)

b) \(\displaystyle {{2x - 1} \over 4} = {{\left( {2x - 1} \right)...} \over {8x + 4}}\)

c) \(\displaystyle {{2x.\left( {...} \right)} \over {{x^2} - 4x + 4}} = {{2x} \over {x - 2}}\)

d) \(\displaystyle {{5{x^2} + 10x} \over {\left( {x - 2} \right)...}} = {{5x} \over {x - 2}}\)

Lời giải

a) \(\displaystyle {{x + 5} \over {3x - 2}} = {{x\left( {x + 5} \right)} \over {x\left( {3x - 2} \right)}}\)

b. \(\displaystyle {{2x - 1} \over 4}=  \frac{{\left( {2x - 1} \right)\left( {2x + 1} \right)}}{{4\left( {2x + 1} \right)}}\)\(\,\displaystyle = {{\left( {2x - 1} \right)\left( {2x + 1} \right)} \over {8x + 4}}\)

c. \(\displaystyle {{2x\left( {x - 2} \right)} \over {{x^2} - 4x + 4}}  = \frac{{2x\left( {x - 2} \right)}}{{{x^2} - 2.x.2 + {2^2}}}\)

\(\displaystyle = \frac{{2x\left( {x - 2} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{2x\left( {x - 2} \right):\left( {x - 2} \right)}}{{{{\left( {x - 2} \right)}^2}:\left( {x - 2} \right)}}\)\(\displaystyle = {{2x} \over {x - 2}}\)

d. \(\displaystyle {{5{x^2} + 10x} \over {\left( {x - 2} \right)\left( {x + 2} \right)}}  = \frac{{5x\left( {x + 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} \)

\(\displaystyle = \frac{{5x\left( {x + 2} \right):\left( {x + 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right):\left( {x + 2} \right)}}= {{5x} \over {x - 2}}\)