Bài 21 trang 111 SGK Toán 9 tập 1

Cho tam giác \(ABC\) có \(AB=3,\ AC=4,\ BC=5\). Vẽ đường tròn \((B;BA)\). Chứng minh rằng \(AC\) là tiếp tuyến của đường tròn. 

Lời giải

Xét tam giác \(ABC\) ta có:

\(BC^2=5^2=25\)

\(AB^2+AC^2=3^2+4^2=9+16=25\)

Suy ra \(BC^2=AB^2+AC^2\)

Theo định lý Pytago đảo, ta có tam giác \(ABC\) là tam giác vuông tại \(A\).

Suy ra \(AB \bot AC\) tại \(A\).

Mà \(BA\) là bán kính.

Vậy \(AC\) là tiếp tuyến của đường tròn


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”