Gọi \({H_1},{H_2},{H_3},{H_4}\) lần lượt là hình chiếu của điểm M trên các mặt phẳng \((BCD) , (ACD) , (ABD) , (ABC)\).
Khi đó \(M{H_1},M{H_2},M{H_3},M{H_4}\) lần lượt là khoảng cách từ điểm \(M\) tới các mặt phẳng đó. Các mặt bên của tứ diện đều có cùng diện tích, ta kí hiệu các diện tích đó là \(S\) và gọi \(h\) là chiều cao của tứ diện đều. Ta có:\(\eqalign{
& {V_{MBCD}} + {V_{MACD}} + {V_{MABD}} + {V_{MABC}} = {V_{ABCD}} \cr
& \Leftrightarrow {1 \over 3}S.M{H_1} + {1 \over 3}S.M{H_2} + {1 \over 3}S.M{H_3} + {1 \over 3}S.M{H_4} = {1 \over 3}S.h \cr
& \Leftrightarrow M{H_1} + M{H_2} + M{H_3} + M{H_4} = h \cr} \)Vậy tổng các khoảng cách từ điểm \(M\) tới bốn mặt của tứ diện đều không phụ thuộc vào vị trí của điểm \(M\) nằm trong tứ diện đó.
Nếu tứ diện đều có cạnh bằng \(a\), ta tính \(h\).
Gọi \(H\) là trực tâm tam giác đều \(BCD\) và \(M\) là trung điểm của \(CD\).
Ta có:\(\eqalign{
& {h^2} = A{H^2} = A{M^2} - H{M^2} = {\left( {{{a\sqrt 3 } \over 2}} \right)^2} - {\left( {{1 \over 3}.{{a\sqrt 3 } \over 2}} \right)^2} \cr
& \,\,\,\,\,\, = {{3{a^2}} \over 4} - {{{a^2}} \over {12}} = {{2{a^3}} \over 3} \Rightarrow h = {{a\sqrt 6 } \over 3} \cr} \)Tổng khoảng cách nói trên bằng \({{a\sqrt 6 } \over 3}\)