Bài 21 trang 40 SBT toán 7 tập 2

Đề bài

Cho hình 5. Chứng minh rằng \(MA + MB < IA + IB < CA  + CB\)

Lời giải

Trong \(∆AMI\) ta có:

\( MA < MI + IA\) (bất đẳng thức tam giác)

Cộng vào 2 vế bất đẳng thức với \(MB\) ta có:

\( MA + MB  < MI  +  IA  +  MB\)

\( \Rightarrow  MA + MB < IB  + IA \) (1)

Trong \(∆BIC\) ta có:

\(IB <  IC  + CB\) (bất đẳng thức tam giác)

Cộng vào 2 vế bất đẳng thức với \(IA\) ta có:

\(IB  + IA < IC  + CB + IA\)

\( \Rightarrow IB  + IA < CA  + CB\)   (2)

Từ (1) và (2) suy ra:  \(MA +  MB < IB + IA < CA + CB\) (đpcm)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”