Bài 21 trang 49 SGK Toán 9 tập 2

Giải vài phương trình của An Khô-va-ri-zmi (Xem Toán 7, Tập 2, tr.26):

a) \({x^2} = {\rm{ }}12x{\rm{ }} + {\rm{ }}288\);                           

b) \(\dfrac{1}{12}x^2 + \dfrac{7}{12}x = 19\).

Lời giải

a) Ta có:

\({x^2} = {\rm{ }}12x{\rm{ }} + {\rm{ }}288{\rm{ }} \Leftrightarrow {\rm{ }}{x^2} - {\rm{ }}12x{\rm{ }} - {\rm{ }}288{\rm{ }} = {\rm{ }}0\)

\(\Rightarrow \Delta' {\rm{ }} = {\rm{ }}{\left( { - 6} \right)^{2}}-{\rm{ }}1{\rm{ }}.{\rm{ }}\left( { - 288} \right){\rm{ }} = {\rm{ }}36{\rm{ }} + {\rm{ }}288{\rm{ }} = {\rm{ }}324  > 0 \)

Do đó phương trình đã cho có hai nghiệm phân biệt:

\({x_1} =\dfrac{6-\sqrt{324}}{1}=6-18=-12\).

\({x_2} =\dfrac{6+\sqrt{324}}{1}=6+18=24\). 

b) Ta có:

\(\dfrac{1}{12}{x^2} + \dfrac{7 }{12}x = 19\)

\(\Leftrightarrow {x^2} + 7x-228= 0\)

\(\rightarrow {\rm{ }}\Delta {\rm{ }} = {\rm{ }}49{\rm{ }}-{\rm{ }}4{\rm{ }}.{\rm{ }}\left( { - 228} \right){\rm{ }} = {\rm{ }}49{\rm{ }} + {\rm{ }}912{\rm{ }}\)

           \(= {\rm{ }}961{\rm{ }} = {\rm{ }}{31^2} > 0\)

Do đó phương trình đã cho có hai nghiệm phân biệt:

\({x_1} =\dfrac{ - 7 + 31}{2} = 12,\)

\({x_2} = \dfrac{ - 7 - 31}{2} =  - 19\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”