Bài 21 trang 76 SGK Toán 9 tập 2

 Cho hai đường tròn bằng nhau \((O)\) và \((O')\) cắt nhau tại \(A\) và \(B\). Vẽ đường thẳng qua \(A\) cắt \(O\) tại \(M\) và cắt \((O')\) tại \(N\) ( \(A\) nằm giữa \(M\) và \(N\)). Hỏi \(MBN\) là tam giác gi? Tại sao?

Lời giải

Vì hai đường tròn \(\left( O \right)\) và \(\left( {O'} \right)\) bằng nhau nên cung \(AB\) của \(\left( O \right)\) và \(\left( {O'} \right)\) bằng nhau

Suy ra \(\widehat {AMB} = \widehat {ANB}\) (các góc nội tiếp chắn các cung bằng nhau thì bằng nhau)

Do đó tam giác \(BMN\) là tam giác cân tại \(B.\) 


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”