Bài 2.101 trang 137 SBT giải tích 12

Tìm \(\displaystyle  x\) biết \(\displaystyle  {\log _3}x + {\log _4}\left( {x + 1} \right) = 2\).

A. \(\displaystyle  x = 1\)                       B. \(\displaystyle  x = 2\)

C. \(\displaystyle  x = 3\)                       D. \(\displaystyle  x = 4\)

Lời giải

ĐK: \(\displaystyle  x > 0\).

Xét hàm \(\displaystyle  f\left( x \right) = {\log _3}x + {\log _4}\left( {x + 1} \right)\) trên \(\displaystyle  \left( {0; + \infty } \right)\) có:

\(\displaystyle  f'\left( x \right) = \frac{1}{{x\ln 3}} + \frac{1}{{\left( {x + 1} \right)\ln 4}} > 0\) với mọi \(\displaystyle  x \in \left( {0; + \infty } \right)\) nên hàm số đồng biến trên \(\displaystyle  \left( {0; + \infty } \right)\).

Mà \(\displaystyle  f\left( 3 \right) = 2\) nên phương trình có nghiệm duy nhất \(\displaystyle  x = 3\).

Chọn C.


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”