Bài 2.102 trang 137 SBT giải tích 12

Số nghiệm của phương trình \(\displaystyle  {\log _{2003}}x + {\log _{2004}}x = 2005\) là:

A. \(\displaystyle  0\)                   B. \(\displaystyle  1\)

C. \(\displaystyle  2\)                   D. Vô số

Lời giải

Xét hàm \(\displaystyle  f\left( x \right) = {\log _{2003}}x + {\log _{2004}}x\) trên \(\displaystyle  \left( {0; + \infty } \right)\) có:

\(\displaystyle  f'\left( x \right) = \frac{1}{{x\ln 2003}} + \frac{1}{{x\ln 2004}} > 0\) với mọi \(\displaystyle  x > 0\) nên hàm số đồng biến trên \(\displaystyle  \left( {0; + \infty } \right)\).

Mà \(\displaystyle  \mathop {\lim }\limits_{x \to  + \infty } f\left( x \right)\) \(\displaystyle   = \mathop {\lim }\limits_{x \to  + \infty } \left( {{{\log }_{2003}}x + {{\log }_{2004}}x} \right) =  + \infty \) nên tồn tại duy nhất giá trị \(\displaystyle  {x_0} > 0\) sao cho \(\displaystyle  f\left( {{x_0}} \right) = 2005\).

Vậy phương trình có nghiệm duy nhất.

Chọn B.


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”