Bài 2.19 trang 71 SBT hình học 11

Đề bài

Cho hìCho hình chóp \(S.ABCD\) có đáy là hình thang \(ABCD\), đáy lớn là \(AD\) và \(AD = 2BC\). Gọio hình chóp \(S.ABCD\) có đáy là hình thang \(ABCD\), đáy lớn là \(AD\) và \(AD = 2BC\). Gọi \(O\) là giao điểm của \(AC\) và \(BD\), \(G\) là trọng tâm của tam giác \(SCD\).

a) Chứng minh rằng \(OG\parallel \left( {SBC} \right)\).

b) Cho \(M\) là trung điểm của \(SD\). Chứng minh rằng \(CM\parallel \left( {SAB} \right)\).

c) Giả sử điểm \(I\) nằm trong đoạn \(SC\) sao cho \(S{\rm{C = }}\dfrac{3 }{2}SI\). Chứng minh rằng \(SA\parallel \left( {BI{\rm{D}}} \right)\).

Hình vẽ




Lời giải

LG câu a

Phương pháp:

Sử dụng định lý Talet.

Sử dụng tính chất của trọng tâm.

Sử dụng tính chất: Nếu đường thẳng \(d\) không nằm trong mặt phẳng \((\alpha)\) và \(d\) song song với đường thẳng \(d’\) nằm trong \((\alpha)\) thì \(d\) song song \((\alpha)\).

Tứ giác \(ABCD\) là hình thang có \(AD\parallel =2BC\).

Theo định lý Talet \(\dfrac{OD}{OB}=\dfrac{OA}{OC}=\dfrac{AD}{BC}=2\)

\(\Rightarrow \dfrac{OD}{BD}=\dfrac{OD}{OB+OD}\) \(=\dfrac{2}{1+2}=\dfrac{2}{3}\text{(1)}\).

Gọi \(H\) là trung điểm của \(SC\), tam giác \(SCD\) có \(G\) là trọng tâm nên \(\dfrac{DG}{DH}=\dfrac{2}{3}\text{(2)}\).

Từ \(\text{(1)}\) và \(\text{(2)}\) suy ra \(\dfrac{DO}{DB}=\dfrac{DG}{DH}=\dfrac{2}{3}\)

Theo định lý Talet \(OG\parallel BH\text{(*)}\).

Mà \(H\in SC\Rightarrow H\in (SBC)\)

\(\Rightarrow BH\subset (SBC)\text{(**)}\)

Từ \(\text{(*)}\) và \(\text{(**)}\) suy ra \( OG\parallel (SBC)\).

LG câu 

Phương pháp:

Sử dụng tính chất đường trung bình trong tam giác.

Sử dụng tính chất hình bình hành.

Sử dụng tính chất: Nếu đường thẳng \(d\) không nằm trong mặt phẳng \((\alpha)\) và \(d\) song song với đường thẳng \(d’\) nằm trong \((\alpha)\) thì \(d\) song song \((\alpha)\).

Gọi \(M’\) là trung điểm của \(SA\) và ta có \(M\) là trung điểm \(SD\) nên trong tam giác \(SAD\) khi đó \(MM’\) là đường trung bình.

\(\Rightarrow MM’\parallel =\dfrac{1}{2}AD\)

Mà hình thang \(ABCD\) có \(BC\parallel =\dfrac{1}{2}AD\)

Suy ra \(MM’\parallel =BC\) \(\Rightarrow\) tứ giác \(MM’BC\) là hình bình hành.

\(\Rightarrow MC\parallel M’B\)

Ta lại có \(M’B\subset (SAB)\)

\(\Rightarrow MC\parallel (SAB)\).

LG câu c

Phương pháp:

Sử dụng định lý Talet.

Sử dụng tính chất: Nếu đường thẳng \(d\) không nằm trong mặt phẳng \((\alpha)\) và \(d\) song song với đường thẳng \(d’\) nằm trong \((\alpha)\) thì \(d\) song song \((\alpha)\).

Ta có: \(SC=\dfrac{3}{2}SI\) \(\Rightarrow \dfrac{CI}{CS}=\dfrac{1}{3}\).

Mà \(\dfrac{OC}{OA}=\dfrac{BC}{AD}=\dfrac{1}{2}\) nên \(\dfrac{CO}{CA}=\dfrac{1}{3}\).

Suy ra \(\dfrac{CI}{CS}=\dfrac{CO}{CA}=\dfrac{1}{3}\)

Theo định lý Talet ta được \(IO\parallel SA\) mà \(IO\subset (BID)\)

\(\Rightarrow SA\parallel (BID)\).