Vì \(M, N\) lần lượt là trung điểm của cạnh \(AC\) và \(AB\) nên \(MN\) là đường trung bình của \(\Delta ABC\).
Do đó \(MN// BC\).
Suy ra tứ giác \(BCMN\) là hình thang và có hai đường chéo \(BM\) và \(CN\) cắt nhau tại \(O\).
Xét \(∆ OBC\) có \(MN // BC\) (cmt)
Theo hệ quả định lí Ta-lét ta có:
\(\displaystyle{{OM} \over {ON}}= {{OB} \over {OC}} \)
\( \Rightarrow OM.OC = ON.OB\) (đpcm).