Ta có \(\overrightarrow {AM} = \dfrac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\), \(\overrightarrow {HM} = \dfrac{1}{2}(\overrightarrow {HB} + \overrightarrow {HC} )\)
\( \Rightarrow \overrightarrow {AM} .\overrightarrow {HM} = \dfrac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right).\left( {\overrightarrow {HB} + \overrightarrow {HC} } \right)\)
\( = \dfrac{1}{4}\left( {\overrightarrow {AB} .\overrightarrow {HB} + \underbrace {\overrightarrow {AB} .\overrightarrow {HC} }_{ = 0} + \underbrace {\overrightarrow {AC} \overrightarrow {.HB} }_{ = 0} + \overrightarrow {AC} .\overrightarrow {HC} } \right)\)
\( = \dfrac{1}{4}(\overrightarrow {AB} .\overrightarrow {HB} + \overrightarrow {AC} .\overrightarrow {HC} )\)
\( = \dfrac{1}{4}\left[ {\overrightarrow {AB} .(\overrightarrow {HC} + \overrightarrow {CB} ) + \overrightarrow {AC} .(\overrightarrow {HB} + \overrightarrow {BC} )} \right]\)
\( = \dfrac{1}{4}\left[ {\underbrace {\overrightarrow {AB} .\overrightarrow {HC} }_0 + \overrightarrow {AB} .\overrightarrow {CB} + \underbrace {\overrightarrow {AC} .\overrightarrow {HB} }_0 + \overrightarrow {AC} .\overrightarrow {BC} } \right]\)
\( = \dfrac{1}{4}\left( {\overrightarrow {AB} .\overrightarrow {CB} + \overrightarrow {AC} .\overrightarrow {BC} } \right)\)\( = \dfrac{1}{4}\left( {\overrightarrow {AB} .\overrightarrow {CB} - \overrightarrow {AC} .\overrightarrow {CB} } \right)\)
\( = \dfrac{1}{4}\overrightarrow {CB} .\left( {\overrightarrow {AB} - \overrightarrow {AC} } \right)\)\( = \dfrac{1}{4}\overrightarrow {CB} .\overrightarrow {CB} = \dfrac{1}{4}{\overrightarrow {CB} ^2} = \dfrac{1}{4}{\overrightarrow {BC} ^2}\)