a) Vì mặt phẳng (P) qua A và vuông góc với \(\displaystyle \Delta '\) nên AA’ thuộc (P). Vì M thuộc \(\displaystyle \Delta \) mà d là hình chiếu vuông góc của \(\displaystyle \Delta \) trên (P) nên M1 thuộc d.
Vì \(\displaystyle MA \bot {\rm{AA}}' => {M_1}A \bot AA'\)
Mặt khác \(\displaystyle {M_1}A \bot M'A'\) nên ta suy ra \(\displaystyle {M_1}A \bot ({\rm{AA}}'M')\). Do đó \(\displaystyle {M_1}A \bot M'A\) và điểm A thuộc mặt cầu đường kính M’M1.
Ta có \(\displaystyle M'A' \bot (P)\) nên \(\displaystyle M'A' \bot A'{M_1}\), ta suy ra điểm A’ cũng thuộc mặt cầu đường kính M’M1
Ta có (Q) // (P) nên ta suy ra \(\displaystyle M{M_1} \bot (Q)\) mà MM’ thuộc (Q), do đó \(\displaystyle {M_1}M \bot MM'\)
Như vậy 5 điểm A, A’ , M, M’, M1 cùng thuộc mặt cầu (S) có đường kính M’M1. Tâm O của mặt cầu (S) là trung điểm của đoạn M’M1.
Ta có \(\displaystyle M'{M_1}^2 = M'A{'^2} + A'{M_1}^2 \) \(\displaystyle = M'A{'^2} + A'{A^2} + A{M_1}^2 \) \(\displaystyle = {x^2} + {a^2} + {x^2}{\cot ^2}\alpha \) vì MM1 = x và \(\displaystyle \cot \alpha = {{A{M_1}} \over {{M_1}M}} = {{A{M_1}} \over x}\)
Bán kính r của mặt cầu (S) bằng \(\displaystyle {{M'{M_1}} \over 2}\) nên \(\displaystyle r = {1 \over 2}\sqrt {{a^2} + {x^2}(1 + {{\cot }^2}\alpha )} \)
b) Hình tứ giác A’M’MM1 là hình chữ nhật nên tâm O cũng là trung điểm của A’M.
Do đó khi x thay đổi thì mặt phẳng (Q) thay đổi và điểm O luôn luôn thuộc đường thẳng d’ đi qua trung điểm I của đoạn AA’ và song song với đường thẳng \(\displaystyle \Delta \).
Vì mặt cầu tâm O luôn luôn đi qua hai điểm cố định A, A’nên nó có tâm O di động trên đường thẳng d’.
Do đó mặt cầu tâm O luôn luôn chứa đường tròn tâm I cố định có đường kính AA’ cố định và nằm trong mặt phẳng cố định vuông góc với đường thẳng d’.