Bài 2.3 phần bài tập bổ sung trang 167 SBT toán 8 tập 1

Đề bài

Cho lục giác đều \(MNPQRS.\) Gọi \(X,\, Y,\, Z\) tương ứng là trung điểm của cạnh \(MN,\, PQ,\, RS.\) Khi đó \(XYZ\) là:

(A) tam giác vuông;

(B) tam giác vuông cân;

(C) tam giác đều;

(D) tam giác mà độ dài các cạnh của nó đôi một khác nhau.

Lời giải

Chọn (C)

Do  \(MNPQRS\) là lục giác đều nên \(MNPQ\) là hình thang.

Ta có \(X,\,Y\) lần lượt là trung điểm của \(MN,\,PQ\) nên \(XY\) là đường trung bình của hình thang \(MNPQ\)

Suy ra: \(XY=\dfrac{1}{2} (MQ+NP)\)

Tương tự: \(ZY=\dfrac{1}{2} (SP+RQ)\)

\(XZ=\dfrac{1}{2} (NR+MS)\)

Mà \(MQ=SP=NR\) và \(NP=RQ=MS\) ( do \(MNPQRS\) là lục giác đều )

Vậy \(XY=ZY=XZ\) hay \(XYZ\) là tam giác đều.


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”