Bài 23 trang 116 SGK Toán 7 tập 1

Đề bài

Cho đoạn thẳng \(AB\) dài \(4cm\) Vẽ đường tròn tâm \(A\) bán kính \(2cm\) và đường tròn tâm \(B\) bán kính \(3cm\), chúng cắt nhau ở \(C\) và \(D\), chứng minh rằng \(AB\) là tia phân giác của góc \(CAD\)

Lời giải

Vì \(C\) là giao của đường tròn tâm \(A\) và đường tròn tâm \(B\) nên \(AC=2cm,BC=3cm\)

Vì \(D\) là giao của đường tròn tâm \(A\) và đường tròn tâm \(B\) nên \(AD=2cm,BD=3cm\)

Do đó \(AC=AD,BC=BD\) 

Xét \(∆BAC\) và \(∆ BAD\) có:

+) \(AC=AD\) (chứng minh trên)

+) \(BC=BD\) (chứng minh trên)

+) \(AB\) cạnh chung.

Suy ra \(∆ BAC= ∆ BAD(c.c.c)\)

Suy ra \(\widehat{BAC}\) = \(\widehat{BAD}\) (hai góc tương ứng)

Vậy \(AB\) là tia phân giác của góc \(CAD\).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”