Diện tích hình quạt :
\(S_{quạt} = \dfrac{\pi r^2 n^o}{360^o}= \dfrac{\pi.l^2.90}{360}=\dfrac{\pi.l^2}4.\)
Diện tích xung quanh của hình nón: \({S_{xq}} = \pi rl\)
Theo đầu bài ta có: \({S_{xq}} = S_{quạt} \Rightarrow πrl= \dfrac{\pi.l^2}4.\)
Vậy \(l = 4r.\)
Suy ra \(\sin \alpha =\dfrac {OA}{SA}= \dfrac{r}l = \dfrac {1}4\) (vì \(l=4r\).)
Vậy \(\alpha= {14^0}28'.\)