Bài 23 trang 47 SGK Toán 8 tập 2

Giải các bất phương trình và biểu diễn tập nghiệm trên trục số:

a) \(2x - 3 > 0\);                  b) \(3x + 4 < 0\);

c) \(4 - 3x ≤ 0\);                  d) \(5 - 2x ≥ 0\).

Lời giải

\(\eqalign{& a)\,\,2x - 3 > 0 \cr & \Leftrightarrow 2x > 3 \cr & \Leftrightarrow x > {3 \over 2} \cr} \)

Vậy tập nghiệm của bất phương trình là: \(S = \left\{ {x\,|\,x > \dfrac{3}{2}} \right\}\)

Biểu diễn tập nghiệm trên trục số:

\(\eqalign{
& b)\,\,3x + 4 < 0 \cr
& \Leftrightarrow 3x < - 4 \cr
& \Leftrightarrow x < {{ - 4} \over 3} \cr} \)

Vậy tập nghiệm của bất phương trình là: \(S = \left\{ {x\,|\,x < \dfrac{{ - 4}}{3}} \right\}\)

Biểu diễn tập nghiệm trên trục số:

\(\eqalign{
& c)\,\,4 - 3x \le 0 \cr
& \Leftrightarrow - 3x \le - 4 \cr
& \Leftrightarrow \left( {{{ - 1} \over 3}} \right).\left( { - 3x} \right) \ge \left( { - 4} \right).\left( {{{ - 1} \over 3}} \right) \cr
& \Leftrightarrow x \ge {4 \over 3} \cr} \)

Vậy tập nghiệm của bất phương trình là: \(S = \left\{ {x\,|\,x \geqslant \dfrac{4}{3}} \right\}\)

Biểu diễn tập nghiệm trên trục số:

\(\eqalign{
& d)\,\,5 - 2x \ge 0 \cr
& \Leftrightarrow - 2x \ge - 5 \cr
& \Leftrightarrow \left( {{{ - 1} \over 2}} \right).\left( { - 2x} \right) \le \left( { - 5} \right).\left( {{{ - 1} \over 2}} \right) \cr
& \Leftrightarrow x \le {5 \over 2} \cr} \)

Vậy tập nghiệm của bất phương trình là: \(S = \left\{ {x\,|\,x \leqslant \dfrac{5}{2}} \right\}\)

Biểu diễn tập nghiệm trên trục số:


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”