a) Khi \(t = 5\) (phút) thì \(v{\rm{ }} = {\rm{ }}3{\rm{ }}.{\rm{ }}{5^2}-{\rm{ }}30{\rm{ }}.{\rm{ }}5{\rm{ }} + {\rm{ }}135{\rm{ }} = {\rm{ }}60\) \((km/h).\)
b) Khi \(v = 120\) \((km/h)\), để tìm \(t\) ta giải phương trình
\(120{\rm{ }} = {\rm{ }}3{t^2}-{\rm{ }}30t{\rm{ }} + {\rm{ }}135\)
\(\Leftrightarrow {t^2}-{\rm{ }}10t{\rm{ }} + {\rm{ }}5{\rm{ }} = {\rm{ }}0.{\rm{ }}\).
Có \(a{\rm{ }} = {\rm{ }}1, \, \, {\rm{ }}b{\rm{ }} = {\rm{ }} - 10, \, \, {\rm{ }}b'{\rm{ }} = {\rm{ }} - 5, \, \, {\rm{ }}c{\rm{ }} = {\rm{ }}5\).
Khi đó: \(\Delta' {\rm{ }} =b'^2-ac= {\rm{ }}{(-5)^2}-{\rm{ }}5{\rm{ }} = {\rm{ }}25{\rm{ }}-{\rm{ }}5{\rm{ }} = {\rm{ }}20>0\)
\(\Rightarrow\) Phương trình có hai nghiệm phân biệt.
Có: \( {\rm{ }}\sqrt {\Delta '}=\sqrt{20} = {\rm{ }}2\sqrt 5. \)
\(\Rightarrow {t_1} = {\rm{ }}5{\rm{ }} + {\rm{ }}2\sqrt 5 {\rm{ }} \approx {\rm{ }}9,47; \, \, {\rm{ }}{t_2} = {\rm{ }}5{\rm{ }} - {\rm{ }}2\sqrt 5 {\rm{ }} \approx {\rm{ }}0,53.\)
Vì rađa chỉ theo dõi trong 10 phút nên \(0 < t < 10\) nên cả hai giá trị của \(t\) đều thích hợp. Vậy \({t_1} \approx {\rm{ }}9,47\) (phút), \({t_2} \approx {\rm{ }}0,53\) (phút).