Bài 2.3 trang 63 SBT hình học 11

Đề bài

Cho tứ diện \(ABCD\). Trên cạnh \(AB\) lấy điểm \(I\) và lấy các điểm \(J\), \(K\) lần lượt là điểm thuộc miền trong các tam giác \(BCD\) và \(ACD\). Gọi \(L\) là giao điểm của \(JK\) với mặt phẳng \((ABC)\)

a) Hãy xác định điểm \(L\).

b) Tìm giao tuyến của mặt phẳng \((IJK)\) với các mặt của tứ diện \(ABCD\).

Hình vẽ



Lời giải

LG câu a

Phương pháp:

Cách tìm giao điểm của đường thẳng \(d\) với mặt phẳng \(\alpha\) trong bài này ta tìm giao điểm của \(d’\) với \(d\) trong đó \(d’\in (\alpha)\)

Gọi \(N = DK \cap AC\); \(M = DJ \cap BC\).

Khi đó \(MN=(DJK) \cap (ABC)\)

\(\Rightarrow MN \subset (ABC)\).

Vì \(L=JK \cap (ABC)\) nên \(L = JK \cap MN\).

LG câu b

Phương pháp:

Ta tìm giao tuyến của \((IJK)\) với từng mặt của tứ diện \(ABCD\)

Ta có \(I=(IJK) \cap (ABC)\).

Mặt khác vì \(L = MN \cap JK\) mà \(MN \subset (ABC)\) và \(JK \subset (IJK)\) nên \(L\) là điểm chung thứ hai của \((ABC)\) và \((IJK)\), suy ra \((IJK) \cap (ABC) = IL\).

Gọi \(E = IL \cap AC\); \(F = EK \cap CD\).

Khi đó \(E = (IJK) \cap (ACD)\); \(F = (IJK) \cap (ACD)\). Suy ra \(EF = (IJK) \cap (ACD)\).

Nối \(FJ\) cắt \(BD\) tại \(P\); \(P=(IJK) \cap (BCD)\).

Suy ra \(PF = (IJK) \cap (BCD)\); \(IP=(IJK) \cap (ABD)\).