a) ĐKXĐ: \(\displaystyle {x^2} - 3x - 4 > 0\) \(\displaystyle \Leftrightarrow \left( {x + 1} \right)\left( {x - 4} \right) > 0\) \(\displaystyle \Leftrightarrow \left[ \begin{array}{l}x > 4\\x < - 1\end{array} \right.\).
Vậy TXĐ \(\displaystyle D = \left( { - \infty ; - 1} \right) \cup \left( {4; + \infty } \right)\).
b) ĐKXĐ: \(\displaystyle - {x^2} + 5x + 6 > 0\) \(\displaystyle \Leftrightarrow \left( {x + 1} \right)\left( {6 - x} \right) > 0\) \(\displaystyle \Leftrightarrow - 1 < x < 6\).
Vậy TXĐ \(\displaystyle D = \left( { - 1;6} \right)\).
c) ĐKXĐ: \(\displaystyle \dfrac{{{x^2} - 9}}{{x + 5}} > 0\) \(\displaystyle \Leftrightarrow \dfrac{{\left( {x - 3} \right)\left( {x + 3} \right)}}{{x + 5}} > 0\).
Xét dấu vế trái ta được:
Vậy TXĐ \(\displaystyle D = \left( { - 5; - 3} \right) \cup \left( {3; + \infty } \right)\).
d) ĐKXĐ: \(\displaystyle \dfrac{{x - 4}}{{x + 4}} > 0 \Leftrightarrow \left[ \begin{array}{l}x > 4\\x < - 4\end{array} \right.\).
Vậy TXĐ: \(\displaystyle D = \left( { - \infty ; - 4} \right) \cup \left( {4; + \infty } \right)\).
e) ĐKXĐ: \(\displaystyle {2^x} - 2 > 0 \Leftrightarrow {2^x} > 2\) \(\displaystyle \Leftrightarrow {2^x} > {2^1} \Leftrightarrow x > 1\).
Vậy TXĐ: \(\displaystyle D = \left( {1; + \infty } \right)\).
g) ĐKXĐ: \(\displaystyle {3^{x - 1}} - 9 > 0 \Leftrightarrow {3^{x - 1}} > 9\) \(\displaystyle \Leftrightarrow {3^{x - 1}} > {3^2} \Leftrightarrow x - 1 > 2\) \(\displaystyle \Leftrightarrow x > 3\).
Vậy TXĐ: \(\displaystyle D = \left( {3; + \infty } \right)\).