Xét hình bình hành ABCD có \(AB = a,AD = b,\widehat {BAD} = \alpha \) và BH là đường cao, ta có \(BH \bot AD\) tại H.
Gọi S là diện tích hình bình hành ABCD, ta có S = AD. BH với \(BH = AB\sin \alpha \)
Vậy \(S = AD.AB\sin \alpha = a.b.\sin \alpha \)
Nếu \(\widehat {BAD} = \alpha \) thì \(\widehat {ABC} = {180^0} - \alpha \)
Khi đó ta vẫn có \(\sin \widehat {BAD} = \sin \widehat {ABC}\)
Nhận xét:
Diện tích hình bình hành ABCD gấp đôi diện tích tam giác ABD mà tam giác ABD có diện tích là \(\dfrac{1}{2}ab\sin \alpha \).
Do đó ta suy ra diện tích của hình bình hành bằng \(ab\sin \alpha \).