Bài 2.37 trang 79 SBT đại số và giải tích 11

Đề bài

Tập hợp \(E\) có \(n\) phần tử thì số tập hợp con của \(E\) (kể cả tập hợp rỗng và tập \(E\)) là:

A. \(n^2\)               B. \( C_n^2\)

C. \(2^n\)               D. \(n !\)

Lời giải

Số tập con rỗng của \(E\) là số cách chọn ra \(0\) phần tử trong \(n\) phần tử là \(C_n^0\)

Số tập con có \(1\) phần tử của \(E\) là số cách chọn ra \(1\) phần tử trong \(n\) phần tử là \(C_n^1\)

Số tập con có \(2\) phần tử của \(E\) là số cách chọn ra \(2\) phần tử trong \(n\) phần tử là \(C_n^2\)

Số các tập con có \(k\) phần tử \((0\le k\le n)\) của tập hợp \(E\) là số cách chọn ra \(k\) phần tử trong \(n\) phần tử của \(E\) là \(C_n^k\)

Số tập con có \(n\) phần tử của \(E\) là số cách chọn ra \(n\) phần tử trong \(n\) phần tử là \(C_n^n\)

Do đó số tâp con của \(E\) là \( C_n^0+C_n^1+ C_n^2+…+ C_n^n=\)\(\sum\limits_{k = 0}^n {C_n^k}  = {(1 + 1)^n} = {2^n}\)

Đáp án : C.