Ta có : \({\left( {{x^3} + xy} \right)^{15}} = \sum\limits_{k = 0}^{15} {C_{15}^k} {\left( {{x^3}} \right)^{15 - k}}{\left( {xy} \right)^k} \)
\(=\sum\limits_{k = 0}^{15} {C_{15}^k{x^{45 - 3k}}{x^k}{y^k} }\)
\(= \sum\limits_{k = 0}^{15} {C_{15}^k{x^{45 - 2k}}{y^k}} \)
Vì đề yêu cầu tìm hệ số của \(x^{25}y^{10}\) khi đó \(x^{45-2k}y^k= x^{25}y^{10}\) nên \(\left\{ \begin{array}{l}45 - 2k = 25\\k = 10\end{array} \right. \Leftrightarrow k = 10\)
Vậy hệ số của \(x^{25}y^{10}\) là \(C_{15}^{10}\).
Đáp án: C.