a) Gọi \(E\), \(F\), \(M\) lần lượt là trung điểm của là trung điểm của \(BC\), \(B'C'\), \(CC'\).
\(I\) là trọng tâm của tam giác \(ABC\)
\(\Rightarrow \dfrac{AI}{AE}=\dfrac{2}{3}\).
\(G\) là trọng tâm của tam giác \(ACC'\)
\(\Rightarrow \dfrac{AG}{AM}=\dfrac{2}{3}\).
Từ đó suy ra \(\dfrac{AI}{AE}=\dfrac{AG}{AM}=\dfrac{2}{3}\).
\(\Rightarrow IG\parallel EM\) mà \(EM\subset (BB'C'C)\)
\(\Rightarrow IG\parallel (BB'C'C)\text{ (1)}\)
\(K\) là trọng tâm của tam giác \((A'B'C')\) khi đó \(\dfrac{A'K}{A'F}=\dfrac{2}{3}\).
Từ đó suy ra \(\dfrac{AI}{AE}=\dfrac{AK}{AF}=\dfrac{2}{3}\).
\(\Rightarrow IK\parallel AA'\) mà \(AA'\parallel BB'\)
\(\Rightarrow IK\parallel BB'\) mà \(BB'\subset (BB'C'C)\)
\(\Rightarrow IK\parallel (BB'C'C)\text{ (2)}\)
Mà \(IG, IK\subset(IGK)\text{ (3)}\)
Từ \(\text{(1)}\), \(\text{(2)}\) và \(\text{(3)}\) suy ra \((IGK)\parallel (BB'C'C)\).
b) Do \(E\in AI, AI\subset (AIB')\)
\(\Rightarrow E\in (AIB')\)
\(C\in A'G, A'G\subset (A'GK)\)
\(\Rightarrow C\in (A'GK)\)
Ta có \(B'E\parallel FC\) (do tứ giác \(B'FCG\) là hình bình hành).
Khi đó \(B'E\parallel (A'GK)\) \(\text{(1)}\)
\(AI\parallel A'K\) (do tứ giác \(A'FEA\) là hình bình hành).
Khi đó \(AI\parallel (A'GK)\) \(\text{(2)}\)
Mà \(B'E \text{ và } AI \subset (AIB')\) \(\text{(3)}\)
Từ \(\text{(1)}\), \(\text{(2)}\), \(\text{(3)}\) suy ra \(\left( {A'GK} \right)\parallel \left( {AIB'} \right)\).