a) Gọi \(H\) là giao điểm của \(OC\) và \(AB\).
Vì \(OH\perp AB\) nên \(HA=HB\) (Định lý 2 - trang 103).
Suy ra \(OC\) là đường trung trực của \(AB\), do đó \(CB=CA.\)
Xét \(\Delta CBO\) và \(\Delta CAO\) có:
\(CO\) chung (GT)
\(CA=CB\) (cmt)
\(OB=OA=R\)
Suy ra \(\Delta CBO=\Delta CAO\) (c.c.c)
\(\Rightarrow \widehat{CBO}=\widehat{CAO}\). (1)
Vì \(AC\) là tiếp tuyến của đường tròn \((O)\) nên:
\(AC\perp OA\Rightarrow \widehat{CAO}=90^{\circ}\) (2)
Từ (1) và (2) suy ra \(\widehat{CBO}=90^{\circ}\).
Tức là \(CB\) vuông góc với \(OB\), mà \(OB\) là bán kính của \((O)\).
Vậy \(CB\) là tiếp tuyến của đường tròn \((O)\).
b) Ta có: \(OA=OB=R=15;\)
\(\ HA=\dfrac{AB}{2}=\dfrac{24}{2}=12\).
Xét tam giác \(HOA\) vuông tại \(H\), áp dụng định lí Pytago, ta có:
\(OA^2=OH^2+AH^2\)
\(\Leftrightarrow OH^{2}=OA^{2}-AH^{2}=15^{2}-12^{2}=81\)
\(\Rightarrow OH=\sqrt{81}=9(cm)\)
Xét tam giác \(BOC\) vuông tại \(B\), áp dụng hệ thức lượng trong tam giác vuông, ta có:
\(OB^{2}=OC\cdot OH \Rightarrow OC=\dfrac{OB^{2}}{OH}=\dfrac{15^2}{9}=25(cm).\)