Bài 24 trang 41 SBT toán 7 tập 2

Đề bài

Cho hai điểm \(A\) và \(B\) nằm về hai phía của đường thẳng \(d. \) Tìm điểm \(C\) thuộc đường thẳng \(d\) sao cho tổng \(AC + CB\) là nhỏ nhất. 

Lời giải

Gọi \(C\) là giao điểm của đoạn thẳng \(AB\) với đường thẳng \(d.\)

Vì \(C \)nằm giữa \(A\) và \(B\) nên  \(AC + CB  = AB\)       (1)

Lấy điểm \(C’\) bất kỳ trên \(d\) \((C’\ne C)\)

Nối \(AC’, BC’.\) 

Trong \(∆ABC’\) ta có:

 \(AC’  + BC’ > AB\) (bất đẳng thức tam giác)      (2)

Từ (1) và (2) suy ra: \(AC’ + C’B > AC + CB\)

Vậy \(C\) là điểm cần tìm.


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”