Gọi \(r\) là bán kính đáy của hình nón ta có \(OA = r, SO = h\) và \(SA = SB = SC = SD =l\) là đường sinh của hình nón.
Gọi \(I\) là trung điểm của đoạn \(AB\), ta có:
\(\left\{ \begin{array}{l}S{A^2} = S{O^2} + O{A^2}\\AI = SA.\cos \alpha \end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{l^2} = {h^2} + {r^2}(1)\\\dfrac{{r\sqrt 2 }}{2} = l\cos \alpha (2)\end{array} \right.\)
\((2) \Rightarrow r = \sqrt 2 l\cos \alpha \)
\((1) \Rightarrow {l^2} = {h^2} + 2{l^2}{\cos ^2}\alpha \)\( \Rightarrow {h^2} = {l^2}(1 - 2{\cos ^2}\alpha )\) \( \Rightarrow {l^2} = \dfrac{{{h^2}}}{{1 - 2{{\cos }^2}\alpha }}\) \( \Rightarrow l = \dfrac{h}{{\sqrt {1 - 2{{\cos }^2}\alpha } }}\)
Do đó \(r = \sqrt 2 l\cos \alpha = \dfrac{{\sqrt 2 h\cos \alpha }}{{\sqrt {1 - 2{{\cos }^2}\alpha } }}\)
\({S_{xq}} = \pi rl\)\( = \pi .\dfrac{{\sqrt 2 h\cos \alpha }}{{\sqrt {1 - 2{{\cos }^2}\alpha } }}.\dfrac{h}{{\sqrt {1 - 2{{\cos }^2}\alpha } }}\) \( = \dfrac{{\pi \sqrt 2 {h^2}\cos \alpha }}{{1 - 2{{\cos }^2}\alpha }}\)